Face Detection
The more accurate OpenCV face detector is deep learning based, and in particular, utilizes the Single Shot Detector (SSD) framework with ResNet as the base network.
#!/usr/bin/env python
# encoding: utf-8
from imutils.video import VideoStream
import numpy as np
import argparse
import cv2
import imutils
import time
def detected_draw(args, img, detections):
(h, w) = img.shape[:2]
# loop over the detections
for i in range(0, detections.shape[2]):
# extract the confidence (i.e., probability) associated with the prediction
confidence = detections[0, 0, i, 2]
# filter out weak detections by ensuring the `confidence` is greater than the minimum confidence
if confidence > args["confidence"]:
# compute the (x, y)-coordinates of the bounding box for the object
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# draw the bounding box of the face along with the associated probability
text = "{:.2f}%".format(confidence * 100)
y = startY - 10 if startY - 10 > 10 else startY + 10
cv2.rectangle(img, (startX, startY), (endX, endY), (255, 255, 255), 2)
cv2.putText(img, text, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.45, (255, 255, 255), 2)
pass
pass
def img_detect(args):
# load our serialized model from disk
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
# load the input image and construct an input blob for the image
# by resizing to a fixed 300x300 pixels and then normalizing it
image = cv2.imread(args["image"])
blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0))
# pass the blob through the network and obtain the detections and predictions
print("[INFO] computing object detections...")
net.setInput(blob)
detections = net.forward()
detected_draw(args, image, detections)
# show the output image
cv2.imshow("Output", image)
cv2.waitKey(0)
pass
def cam_detect(args):
# load our serialized model from disk
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
# initialize the video stream and allow the camera sensor to warm up
print("[INFO] starting video stream...")
vs = VideoStream(src=0).start()
#for Raspberry Pi camera
#vs = VideoStream(usePiCamera=True).start()
time.sleep(2.0)
# loop over the frames from the video stream
while True:
# grab the frame from the threaded video stream and resize it
# to have a maximum width of 400 pixels
frame = vs.read()
frame = imutils.resize(frame, width=800)
# grab the frame dimensions and convert it to a blob
blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0))
# pass the blob through the network and obtain the detections and predictions
net.setInput(blob)
detections = net.forward()
detected_draw(args, frame, detections)
# show the output frame
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
pass
# do a bit of cleanup
cv2.destroyAllWindows()
vs.stop()
pass
if __name__ == '__main__':
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=False, default='', help="path to input image")
ap.add_argument("-p", "--prototxt", required=False, default='deploy.prototxt', help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", required=False, default='res10_300x300_ssd_iter_140000_fp16.caffemodel', help="path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.5, help="minimum probability to filter weak detections")
args = vars(ap.parse_args())
if len(args['image']) == 0:
cam_detect(args)
else:
img_detect(args)
pass
refs:
the Caffe prototxt file: deploy.prototxt
the Caffe weight file: res10_300x300_ssd_iter_140000_fp16.caffemodel