使用方法
下载原始数据后,置于工程目录下,解压,运行以下代码即可
使用数据:其中训练集包含60,000个样本,测试集包含10,000个样本
- 训练集images: train-images-idx3-ubyte.gz
- 训练集labels: train-labels-idx1-ubyte.gz
- 测试集images: t10k-images-idx3-ubyte.gz
- 测试集labels: t10k-labels-idx1-ubyte.gz
转化后:mnist_train.csv,mnist_test.csv两个文件
def convert(imgf, labelf, outf, n):f = open(imgf, 'rb')o = open(outf, 'w')l = open(labelf, 'rb')f.read(16)l.read(8)images = []for i in range(n):image = [ord(l.read(1))]for j in range(28 * 28):image.append(ord(f.read(1)))images.append(image)for image in images:o.write(','.join(str(pix) for pix in image) + '\n')f.close()o.close()l.close()convert('MNIST/train-images.idx3-ubyte', 'MNIST/train-labels.idx1-ubyte', 'mnist_train.csv', 60000)convert('MNIST/t10k-images.idx3-ubyte', 'MNIST/t10k-labels.idx1-ubyte', 'mnist_test.csv', 10000)print("Convert Finished")
