使用方法
下载原始数据后,置于工程目录下,解压,运行以下代码即可
使用数据:其中训练集包含60,000个样本,测试集包含10,000个样本
- 训练集images: train-images-idx3-ubyte.gz
- 训练集labels: train-labels-idx1-ubyte.gz
- 测试集images: t10k-images-idx3-ubyte.gz
- 测试集labels: t10k-labels-idx1-ubyte.gz
转化后:mnist_train.csv,mnist_test.csv两个文件
def convert(imgf, labelf, outf, n):
f = open(imgf, 'rb')
o = open(outf, 'w')
l = open(labelf, 'rb')
f.read(16)
l.read(8)
images = []
for i in range(n):
image = [ord(l.read(1))]
for j in range(28 * 28):
image.append(ord(f.read(1)))
images.append(image)
for image in images:
o.write(','.join(str(pix) for pix in image) + '\n')
f.close()
o.close()
l.close()
convert('MNIST/train-images.idx3-ubyte', 'MNIST/train-labels.idx1-ubyte', 'mnist_train.csv', 60000)
convert('MNIST/t10k-images.idx3-ubyte', 'MNIST/t10k-labels.idx1-ubyte', 'mnist_test.csv', 10000)
print("Convert Finished")