Kipf, T., & Welling, M. (2017). Semi-Supervised Classification with Graph Convolutional Networks. ArXiv, abs/1609.02907.

摘要:我们提出了一种在图结构数据上进行半监督学习的可扩展方法,这种方法是基于直接在图上操作的卷积神经网络的高效变体。我们通过谱图卷积的局部一阶近似来激励我们卷积架构的选择。我们的模型在图边数量上线性扩展,并学习隐藏层表示,对局部图结构和节点的特征进行编码。在对引文网络和知识图数据集的大量实验中,我们证明我们的方法以显著的优势优于相关方法。

1 介绍

考虑节点分类问题,如citation network,只有少部分节点的标签已知,这类问题可称为基于图的半监督学习。
在损失函数中使用图拉普拉斯正则项:01 Semi-Supervised Classification with Graph Convolutional Networks - 图1

  • 01 Semi-Supervised Classification with Graph Convolutional Networks - 图2表示有标签的那部分的有监督损失
  • 01 Semi-Supervised Classification with Graph Convolutional Networks - 图3是神经网络的可导函数
  • 01 Semi-Supervised Classification with Graph Convolutional Networks - 图4是权重因子
  • 01 Semi-Supervised Classification with Graph Convolutional Networks - 图5是节点特征向量01 Semi-Supervised Classification with Graph Convolutional Networks - 图6的矩阵
  • 01 Semi-Supervised Classification with Graph Convolutional Networks - 图701 Semi-Supervised Classification with Graph Convolutional Networks - 图8个节点01 Semi-Supervised Classification with Graph Convolutional Networks - 图9、边01 Semi-Supervised Classification with Graph Convolutional Networks - 图10、邻接矩阵01 Semi-Supervised Classification with Graph Convolutional Networks - 图11、度矩阵01 Semi-Supervised Classification with Graph Convolutional Networks - 图12的无向图01 Semi-Supervised Classification with Graph Convolutional Networks - 图13
  • 上式假设图中相连的节点极有可能共享相同的标签,但是这可能会限制模型的性能

本文直接使用神经网络模型01 Semi-Supervised Classification with Graph Convolutional Networks - 图14对图结构编码,对所有有标签的节点训练01 Semi-Supervised Classification with Graph Convolutional Networks - 图15,从而避免了损失函数中明确的基于图的正则化。基于图的邻接矩阵的01 Semi-Supervised Classification with Graph Convolutional Networks - 图16允许模型从有监督损失01 Semi-Supervised Classification with Graph Convolutional Networks - 图17中分布梯度信息,从而能够在有与无标签的情况下学习节点表示。
两个方面的贡献:

  • 我们为直接在图上操作的神经网络模型引入了一个简单且表现良好的层间传播规则,并展示了如何从谱图卷积的一阶近似来激励它;
  • 我们展示了这种基于图的神经网络模型形式能够快速和可扩展地对图中节点进行半监督分类。在一些数据集上的实验表明,我们的模型与最先进的半监督学习方法相比,在分类的准确性和效率上都有很好的表现。

    2 Fast Approximate Convolutions on Graphs

    多层Graph Convolutional Network(GCN)的层间传播规则为:01 Semi-Supervised Classification with Graph Convolutional Networks - 图18

  • 01 Semi-Supervised Classification with Graph Convolutional Networks - 图19 无向图的邻接矩阵加上self-connections

  • 01 Semi-Supervised Classification with Graph Convolutional Networks - 图20是单位阵
  • 01 Semi-Supervised Classification with Graph Convolutional Networks - 图2101 Semi-Supervised Classification with Graph Convolutional Networks - 图22是具体层可训练的权重矩阵
  • 01 Semi-Supervised Classification with Graph Convolutional Networks - 图23是激活函数,如01 Semi-Supervised Classification with Graph Convolutional Networks - 图24
  • 01 Semi-Supervised Classification with Graph Convolutional Networks - 图25是第01 Semi-Supervised Classification with Graph Convolutional Networks - 图26层激活值矩阵,01 Semi-Supervised Classification with Graph Convolutional Networks - 图27

    2.1 Spectral Graph Convolutions

    Fourier变换:01 Semi-Supervised Classification with Graph Convolutional Networks - 图28
    其中,01 Semi-Supervised Classification with Graph Convolutional Networks - 图29是标准化的图Laplacian01 Semi-Supervised Classification with Graph Convolutional Networks - 图30的特征向量矩阵。
    可以将01 Semi-Supervised Classification with Graph Convolutional Networks - 图31理解成01 Semi-Supervised Classification with Graph Convolutional Networks - 图32的特征值的函数,即为01 Semi-Supervised Classification with Graph Convolutional Networks - 图33
    计算上式中01 Semi-Supervised Classification with Graph Convolutional Networks - 图34的复杂度为01 Semi-Supervised Classification with Graph Convolutional Networks - 图35,复杂度太高。另外,在大图中第一步骤就要计算01 Semi-Supervised Classification with Graph Convolutional Networks - 图36的分解太昂贵了。为了解决这一问题,建议使用Chebyshev多项式来近似估计:
    01 Semi-Supervised Classification with Graph Convolutional Networks - 图37,其中01 Semi-Supervised Classification with Graph Convolutional Networks - 图3801 Semi-Supervised Classification with Graph Convolutional Networks - 图39表示01 Semi-Supervised Classification with Graph Convolutional Networks - 图40的最大特征值,01 Semi-Supervised Classification with Graph Convolutional Networks - 图41是Chebyshev系数向量。
    Chebyshev多项式:01 Semi-Supervised Classification with Graph Convolutional Networks - 图42
    01 Semi-Supervised Classification with Graph Convolutional Networks - 图43,由此得出01 Semi-Supervised Classification with Graph Convolutional Networks - 图44,复杂度为01 Semi-Supervised Classification with Graph Convolutional Networks - 图45

    2.2 Layer-Wise Linear Model

    基于图卷积的神经网络模型可以基于01 Semi-Supervised Classification with Graph Convolutional Networks - 图46堆叠多层卷积,每层紧跟着一个逐点非线性函数。现在假设限制逐层卷积操作01 Semi-Supervised Classification with Graph Convolutional Networks - 图47,即关于01 Semi-Supervised Classification with Graph Convolutional Networks - 图48的线性函数,因此这是一个基于图Laplacian spectrum的线性函数。