单列计算
df['col2'] = df['col1'].map(lambda x: x**2)# 自定义lambda函数define square(x): return (x ** 2)df['col2'] = df['col1'].map(square)
多列计算
# 必须设置axis=1进行列操作df['col3'] = df.apply(lambda x: x['col1'] + 2 * x['col2'], axis=1)
分组计算
df['col3'] = df.groupby('col1')['col2'].transform(lambda x: (x.sum() - x) / x.count())# 或sumcount = df.groupby('col1')['col2'].transform(lambda x: x.sum() + x.count())df['col3'].map(sumcount)
聚合函数
df['col2'] = df.groupby('col1').agg({'col1':{'col1_mean': mean, 'col1_sum‘’: sum}, 'col2': {'col2_count': count}})