对DataFrame的某一列进行操作,一般都会使用df[“xx”].str下的方法
df[ ].str.strip( )
先创建带有空格的df:
df = pd.DataFrame({'Company':['company A','company B','company C','company A'],'Sales':['Peter ',' Amy','John ','Mi ke']})dfOut[38]:Company Sales0 company A Peter1 company B Amy2 company C John3 company A Mi ke
.str 先要转成字符串, lstrip()表示去除左边空格
df['Sales'].str.lstrip()Out[39]:0 Peter1 Amy2 John3 Mi keName: Sales, dtype: object
.str 先要转成字符串, rstrip()表示去除左边空格
df['Sales'].str.rstrip()Out[40]:0 Peter1 Amy2 John3 Mi keName: Sales, dtype: object
.str 先要转成字符串, strip()表示去除左右两边,当中的空格仍在:
df['Sales'].str.strip()Out[41]:0 Peter1 Amy2 John3 Mi keName: Sales, dtype: object
用replace 可以替换所有的空格:
df['Sales'].str.replace(' ','')Out[42]:0 Peter1 Amy2 John3 MikeName: Sales, dtype: object
继续replace:
df['Company'].str.replace('company','')Out[43]:0 A1 B2 C3 AName: Company, dtype: object
直接用df.replace()
df.replace('company A','New')Out[84]:Company Sales0 New Peter1 company B Amy2 company C John3 New Mi ke
series.str.replace() & df.replace()的区别:
df['Sales'].str.replace('Amy','AAA')Out[87]:0 Peter1 AAA2 John3 Mi keName: Sales, dtype: objectdf.replace({'Amy':'AAA','company B':'BBB'})Out[90]:Company Sales0 company A Peter1 BBB Amy2 company C John3 company A Mi ke
df.replace() 当有空格的时候才会替换,并不会替换啊单元格里面的字符串后面的空格:
df.replace(' ' ,'')Out[91]:Company Sales0 company A Peter1 company B Amy2 company C John3 company A Mi ke
