10分钟pandas教程

这是一个简短的介绍pandas用法,主要面向新用户。 在Cookbook你可以看到更复杂的方法。

通常,我们导入以下模块:

  1. In [1]: import pandas as pd
  2. In [2]: import numpy as np
  3. In [3]: import matplotlib.pyplot as plt

创建对象

创建一个Series对象:

  1. In [4]: s = pd.Series([1,3,5,np.nan,6,8])
  2. In [5]: s
  3. Out[5]:
  4. 0 1.0
  5. 1 3.0
  6. 2 5.0
  7. 3 NaN
  8. 4 6.0
  9. 5 8.0
  10. dtype: float64

通过numpy数组创建一个DateFrame对象,包括索引和列标签:

  1. In [6]: dates = pd.date_range('20130101', periods=6)
  2. In [7]: dates
  3. Out[7]:
  4. DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
  5. '2013-01-05', '2013-01-06'],
  6. dtype='datetime64[ns]', freq='D')
  7. In [8]: df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))
  8. In [9]: df
  9. Out[9]:
  10. A B C D
  11. 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
  12. 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
  13. 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
  14. 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
  15. 2013-01-05 -0.424972 0.567020 0.276232 -1.087401
  16. 2013-01-06 -0.673690 0.113648 -1.478427 0.524988

通过字典方式创建DataFrame对象:

  1. In [10]: df2 = pd.DataFrame({ 'A' : 1.,
  2. ....: 'B' : pd.Timestamp('20130102'),
  3. ....: 'C' : pd.Series(1,index=list(range(4)),dtype='float32'),
  4. ....: 'D' : np.array([3] * 4,dtype='int32'),
  5. ....: 'E' : pd.Categorical(["test","train","test","train"]),
  6. ....: 'F' : 'foo' })
  7. ....:
  8. In [11]: df2
  9. Out[11]:
  10. A B C D E F
  11. 0 1.0 2013-01-02 1.0 3 test foo
  12. 1 1.0 2013-01-02 1.0 3 train foo
  13. 2 1.0 2013-01-02 1.0 3 test foo
  14. 3 1.0 2013-01-02 1.0 3 train foo

查看各列的类型:

  1. In [12]: df2.dtypes
  2. Out[12]:
  3. A float64
  4. B datetime64[ns]
  5. C float32
  6. D int32
  7. E category
  8. F object
  9. dtype: object

可视化数据

查看首尾行数:

  1. In [14]: df.head()
  2. Out[14]:
  3. A B C D
  4. 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
  5. 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
  6. 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
  7. 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
  8. 2013-01-05 -0.424972 0.567020 0.276232 -1.087401
  9. In [15]: df.tail(3)
  10. Out[15]:
  11. A B C D
  12. 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
  13. 2013-01-05 -0.424972 0.567020 0.276232 -1.087401
  14. 2013-01-06 -0.673690 0.113648 -1.478427 0.524988

显示索引,列标签和底层numpy数据:

  1. In [16]: df.index
  2. Out[16]:
  3. DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
  4. '2013-01-05', '2013-01-06'],
  5. dtype='datetime64[ns]', freq='D')
  6. In [17]: df.columns
  7. Out[17]: Index([u'A', u'B', u'C', u'D'], dtype='object')
  8. In [18]: df.values
  9. Out[18]:
  10. array([[ 0.4691, -0.2829, -1.5091, -1.1356],
  11. [ 1.2121, -0.1732, 0.1192, -1.0442],
  12. [-0.8618, -2.1046, -0.4949, 1.0718],
  13. [ 0.7216, -0.7068, -1.0396, 0.2719],
  14. [-0.425 , 0.567 , 0.2762, -1.0874],
  15. [-0.6737, 0.1136, -1.4784, 0.525 ]])

describe方法显示数据的快速统计汇总结果:

  1. In [19]: df.describe()
  2. Out[19]:
  3. A B C D
  4. count 6.000000 6.000000 6.000000 6.000000
  5. mean 0.073711 -0.431125 -0.687758 -0.233103
  6. std 0.843157 0.922818 0.779887 0.973118
  7. min -0.861849 -2.104569 -1.509059 -1.135632
  8. 25% -0.611510 -0.600794 -1.368714 -1.076610
  9. 50% 0.022070 -0.228039 -0.767252 -0.386188
  10. 75% 0.658444 0.041933 -0.034326 0.461706
  11. max 1.212112 0.567020 0.276232 1.071804

转置数据:

  1. In [20]: df.T
  2. Out[20]:
  3. 2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06
  4. A 0.469112 1.212112 -0.861849 0.721555 -0.424972 -0.673690
  5. B -0.282863 -0.173215 -2.104569 -0.706771 0.567020 0.113648
  6. C -1.509059 0.119209 -0.494929 -1.039575 0.276232 -1.478427
  7. D -1.135632 -1.044236 1.071804 0.271860 -1.087401 0.524988

按索引排序:

  1. In [21]: df.sort_index(axis=1, ascending=False)
  2. Out[21]:
  3. D C B A
  4. 2013-01-01 -1.135632 -1.509059 -0.282863 0.469112
  5. 2013-01-02 -1.044236 0.119209 -0.173215 1.212112
  6. 2013-01-03 1.071804 -0.494929 -2.104569 -0.861849
  7. 2013-01-04 0.271860 -1.039575 -0.706771 0.721555
  8. 2013-01-05 -1.087401 0.276232 0.567020 -0.424972
  9. 2013-01-06 0.524988 -1.478427 0.113648 -0.673690

按指定列的值排序:

  1. In [22]: df.sort_values(by='B')
  2. Out[22]:
  3. A B C D
  4. 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
  5. 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
  6. 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
  7. 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
  8. 2013-01-06 -0.673690 0.113648 -1.478427 0.524988
  9. 2013-01-05 -0.424972 0.567020 0.276232 -1.087401

选择数据

Note:标准Python/Numpy的数据选择和设置很直观和方便,但是在生产环境,我们推荐优化的pandas方法,如at, .iat, .loc, .iloc 和 .ix

Geting数据

选择一列数据,返回Series数据类型,和 df.A 命令等价:

  1. In [23]: df['A']
  2. Out[23]:
  3. 2013-01-01 0.469112
  4. 2013-01-02 1.212112
  5. 2013-01-03 -0.861849
  6. 2013-01-04 0.721555
  7. 2013-01-05 -0.424972
  8. 2013-01-06 -0.673690
  9. Freq: D, Name: A, dtype: float64

通过 [] 选择行数据:

  1. In [24]: df[0:3]
  2. Out[24]:
  3. A B C D
  4. 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
  5. 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
  6. 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
  7. In [25]: df['20130102':'20130104']
  8. Out[25]:
  9. A B C D
  10. 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
  11. 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
  12. 2013-01-04 0.721555 -0.706771 -1.039575 0.271860

列标签选择数据

通过date索引获取一个横截面(cross section)数据:

  1. In [26]: df.loc[dates[0]]
  2. Out[26]:
  3. A 0.469112
  4. B -0.282863
  5. C -1.509059
  6. D -1.135632
  7. Name: 2013-01-01 00:00:00, dtype: float64

多个标签获取数据:

  1. In [27]: df.loc[:,['A','B']]
  2. Out[27]:
  3. A B
  4. 2013-01-01 0.469112 -0.282863
  5. 2013-01-02 1.212112 -0.173215
  6. 2013-01-03 -0.861849 -2.104569
  7. 2013-01-04 0.721555 -0.706771
  8. 2013-01-05 -0.424972 0.567020
  9. 2013-01-06 -0.673690 0.113648

切片数据:

  1. In [28]: df.loc['20130102':'20130104',['A','B']]
  2. Out[28]:
  3. A B
  4. 2013-01-02 1.212112 -0.173215
  5. 2013-01-03 -0.861849 -2.104569
  6. 2013-01-04 0.721555 -0.706771

在切片数据上精简维度:

  1. In [29]: df.loc['20130102',['A','B']]
  2. Out[29]:
  3. A 1.212112
  4. B -0.173215
  5. Name: 2013-01-02 00:00:00, dtype: float64

获取一个标量数据:

  1. In [30]: df.loc[dates[0],'A']
  2. Out[30]: 0.46911229990718628

一个更快速获取标量数据的方法(和上一个方法等同):

  1. In [31]: df.at[dates[0],'A']
  2. Out[31]: 0.46911229990718628

通过位置获取数据

通过传递一个整数值定位:

  1. In [32]: df.iloc[3]
  2. Out[32]:
  3. A 0.721555
  4. B -0.706771
  5. C -1.039575
  6. D 0.271860
  7. Name: 2013-01-04 00:00:00, dtype: float64

类似Numpy/python,通过切片定位:

  1. In [33]: df.iloc[3:5,0:2]
  2. Out[33]:
  3. A B
  4. 2013-01-04 0.721555 -0.706771
  5. 2013-01-05 -0.424972 0.567020

通过整数列表定位:

  1. In [34]: df.iloc[[1,2,4],[0,2]]
  2. Out[34]:
  3. A C
  4. 2013-01-02 1.212112 0.119209
  5. 2013-01-03 -0.861849 -0.494929
  6. 2013-01-05 -0.424972 0.276232

指定行切片:

  1. In [35]: df.iloc[1:3,:]
  2. Out[35]:
  3. A B C D
  4. 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
  5. 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804

指定列切片:

  1. In [36]: df.iloc[:,1:3]
  2. Out[36]:
  3. B C
  4. 2013-01-01 -0.282863 -1.509059
  5. 2013-01-02 -0.173215 0.119209
  6. 2013-01-03 -2.104569 -0.494929
  7. 2013-01-04 -0.706771 -1.039575
  8. 2013-01-05 0.567020 0.276232
  9. 2013-01-06 0.113648 -1.478427

通过位置获取值:

  1. In [37]: df.iloc[1,1]
  2. Out[37]: -0.17321464905330858

类似的iat方法:

  1. In [38]: df.iat[1,1]
  2. Out[38]: -0.17321464905330858

布尔索引

通过单列值取数:

  1. In [39]: df[df.A > 0]
  2. Out[39]:
  3. A B C D
  4. 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
  5. 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
  6. 2013-01-04 0.721555 -0.706771 -1.039575 0.271860

一个where操作取值:

  1. In [40]: df[df > 0]
  2. Out[40]:
  3. A B C D
  4. 2013-01-01 0.469112 NaN NaN NaN
  5. 2013-01-02 1.212112 NaN 0.119209 NaN
  6. 2013-01-03 NaN NaN NaN 1.071804
  7. 2013-01-04 0.721555 NaN NaN 0.271860
  8. 2013-01-05 NaN 0.567020 0.276232 NaN
  9. 2013-01-06 NaN 0.113648 NaN 0.524988

isin()方法:

  1. In [41]: df2 = df.copy()
  2. In [42]: df2['E'] = ['one', 'one','two','three','four','three']
  3. In [43]: df2
  4. Out[43]:
  5. A B C D E
  6. 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 one
  7. 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 one
  8. 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two
  9. 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 three
  10. 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four
  11. 2013-01-06 -0.673690 0.113648 -1.478427 0.524988 three
  12. In [44]: df2[df2['E'].isin(['two','four'])]
  13. Out[44]:
  14. A B C D E
  15. 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two
  16. 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four

赋值

相同索引赋值一列数据:

  1. In [45]: s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130102', periods=6))
  2. In [46]: s1
  3. Out[46]:
  4. 2013-01-02 1
  5. 2013-01-03 2
  6. 2013-01-04 3
  7. 2013-01-05 4
  8. 2013-01-06 5
  9. 2013-01-07 6
  10. Freq: D, dtype: int64
  11. In [47]: df['F'] = s1

通过标签赋值:

  1. In [48]: df.at[dates[0],'A'] = 0

位置赋值:

  1. In [49]: df.iat[0,1] = 0

numpy数组赋值:

  1. In [50]: df.loc[:,'D'] = np.array([5] * len(df))

前面操作的结果展示:

  1. In [51]: df
  2. Out[51]:
  3. A B C D F
  4. 2013-01-01 0.000000 0.000000 -1.509059 5 NaN
  5. 2013-01-02 1.212112 -0.173215 0.119209 5 1.0
  6. 2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0
  7. 2013-01-04 0.721555 -0.706771 -1.039575 5 3.0
  8. 2013-01-05 -0.424972 0.567020 0.276232 5 4.0
  9. 2013-01-06 -0.673690 0.113648 -1.478427 5 5.0

where操作赋值:

  1. In [52]: df2 = df.copy()
  2. In [53]: df2[df2 > 0] = -df2
  3. In [54]: df2
  4. Out[54]:
  5. A B C D F
  6. 2013-01-01 0.000000 0.000000 -1.509059 -5 NaN
  7. 2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1.0
  8. 2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2.0
  9. 2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3.0
  10. 2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4.0
  11. 2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5.0

缺失数据处理

pandas 主要用np.nan表示缺失数据,默认不列入计算。

reindex方法允许在指定的轴上增/删/改原索引,返回一个副本:

  1. In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])
  2. In [56]: df1.loc[dates[0]:dates[1],'E'] = 1
  3. In [57]: df1
  4. Out[57]:
  5. A B C D E
  6. 2018-03-01 0.004023 -1.776898 0.689760 0.753648 1.0
  7. 2018-03-02 1.979978 0.965044 0.512416 -2.538019 1.0
  8. 2018-03-03 -0.991052 -0.690239 0.077280 0.860828 NaN
  9. 2018-03-04 0.147670 0.886152 1.991110 -0.514134 NaN

删除有缺失值的行:

  1. In [58]: df1.dropna(how='any')
  2. Out[58]:
  3. A B C D F E
  4. 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0

在缺失值位置填充:

  1. In [40]: df1.fillna(value=5)
  2. Out[40]:
  3. A B C D E
  4. 2018-03-01 0.004023 -1.776898 0.689760 0.753648 1.0
  5. 2018-03-02 1.979978 0.965044 0.512416 -2.538019 1.0
  6. 2018-03-03 -0.991052 -0.690239 0.077280 0.860828 5.0
  7. 2018-03-04 0.147670 0.886152 1.991110 -0.514134 5.0

判断是否缺失,返回布尔集:

  1. In [41]: df1.isnull()
  2. Out[41]:
  3. A B C D E
  4. 2018-03-01 False False False False False
  5. 2018-03-02 False False False False False
  6. 2018-03-03 False False False False True
  7. 2018-03-04 False False False False True

数据操作

Operations 通常排除缺失数据

描述统计:

  1. In [61]: df.mean()
  2. Out[61]:
  3. A -0.004474
  4. B -0.383981
  5. C -0.687758
  6. D 5.000000
  7. F 3.000000
  8. dtype: float64

同样操作在标签维度:

  1. In [62]: df.mean(1)
  2. Out[62]:
  3. 2013-01-01 0.872735
  4. 2013-01-02 1.431621
  5. 2013-01-03 0.707731
  6. 2013-01-04 1.395042
  7. 2013-01-05 1.883656
  8. 2013-01-06 1.592306
  9. Freq: D, dtype: float64

pandas操作不同维度的数据需要对齐,另外它会按指定的维度方向计算:

  1. In [63]: s = pd.Series([1,3,5,np.nan,6,8], index=dates).shift(2)
  2. In [64]: s
  3. Out[64]:
  4. 2013-01-01 NaN
  5. 2013-01-02 NaN
  6. 2013-01-03 1.0
  7. 2013-01-04 3.0
  8. 2013-01-05 5.0
  9. 2013-01-06 NaN
  10. Freq: D, dtype: float64
  11. In [65]: df.sub(s, axis='index')
  12. Out[65]:
  13. A B C D F
  14. 2013-01-01 NaN NaN NaN NaN NaN
  15. 2013-01-02 NaN NaN NaN NaN NaN
  16. 2013-01-03 -1.861849 -3.104569 -1.494929 4.0 1.0
  17. 2013-01-04 -2.278445 -3.706771 -4.039575 2.0 0.0
  18. 2013-01-05 -5.424972 -4.432980 -4.723768 0.0 -1.0
  19. 2013-01-06 NaN NaN NaN NaN NaN

apply方法

applying 函数:

  1. In [66]: df.apply(np.cumsum)
  2. Out[66]:
  3. A B C D F
  4. 2013-01-01 0.000000 0.000000 -1.509059 5 NaN
  5. 2013-01-02 1.212112 -0.173215 -1.389850 10 1.0
  6. 2013-01-03 0.350263 -2.277784 -1.884779 15 3.0
  7. 2013-01-04 1.071818 -2.984555 -2.924354 20 6.0
  8. 2013-01-05 0.646846 -2.417535 -2.648122 25 10.0
  9. 2013-01-06 -0.026844 -2.303886 -4.126549 30 15.0
  10. In [67]: df.apply(lambda x: x.max() - x.min())
  11. Out[67]:
  12. A 2.073961
  13. B 2.671590
  14. C 1.785291
  15. D 0.000000
  16. F 4.000000
  17. dtype: float64

直方图

  1. In [68]: s = pd.Series(np.random.randint(0, 7, size=10))
  2. In [69]: s
  3. Out[69]:
  4. 0 4
  5. 1 2
  6. 2 1
  7. 3 2
  8. 4 6
  9. 5 4
  10. 6 4
  11. 7 6
  12. 8 4
  13. 9 4
  14. dtype: int64
  15. In [70]: s.value_counts()
  16. Out[70]:
  17. 4 5
  18. 6 2
  19. 2 2
  20. 1 1
  21. dtype: int64

字符串方法

Series中的字符处理方法和Python中的str方法一样。另外str方法默认在模式匹配的时候默认使用正则表达。

  1. In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
  2. In [72]: s.str.lower()
  3. Out[72]:
  4. 0 a
  5. 1 b
  6. 2 c
  7. 3 aaba
  8. 4 baca
  9. 5 NaN
  10. 6 caba
  11. 7 dog
  12. 8 cat
  13. dtype: object

合并(merge)

concat方法:

  1. In [73]: df = pd.DataFrame(np.random.randn(10, 4))
  2. In [74]: df
  3. Out[74]:
  4. 0 1 2 3
  5. 0 -0.548702 1.467327 -1.015962 -0.483075
  6. 1 1.637550 -1.217659 -0.291519 -1.745505
  7. 2 -0.263952 0.991460 -0.919069 0.266046
  8. 3 -0.709661 1.669052 1.037882 -1.705775
  9. 4 -0.919854 -0.042379 1.247642 -0.009920
  10. 5 0.290213 0.495767 0.362949 1.548106
  11. 6 -1.131345 -0.089329 0.337863 -0.945867
  12. 7 -0.932132 1.956030 0.017587 -0.016692
  13. 8 -0.575247 0.254161 -1.143704 0.215897
  14. 9 1.193555 -0.077118 -0.408530 -0.862495
  15. # break it into pieces
  16. In [75]: pieces = [df[:3], df[3:7], df[7:]]
  17. In [76]: pd.concat(pieces)
  18. Out[76]:
  19. 0 1 2 3
  20. 0 -0.548702 1.467327 -1.015962 -0.483075
  21. 1 1.637550 -1.217659 -0.291519 -1.745505
  22. 2 -0.263952 0.991460 -0.919069 0.266046
  23. 3 -0.709661 1.669052 1.037882 -1.705775
  24. 4 -0.919854 -0.042379 1.247642 -0.009920
  25. 5 0.290213 0.495767 0.362949 1.548106
  26. 6 -1.131345 -0.089329 0.337863 -0.945867
  27. 7 -0.932132 1.956030 0.017587 -0.016692
  28. 8 -0.575247 0.254161 -1.143704 0.215897
  29. 9 1.193555 -0.077118 -0.408530 -0.862495

join方法

  1. In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})
  2. In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})
  3. In [79]: left
  4. Out[79]:
  5. key lval
  6. 0 foo 1
  7. 1 foo 2
  8. In [80]: right
  9. Out[80]:
  10. key rval
  11. 0 foo 4
  12. 1 foo 5
  13. In [81]: pd.merge(left, right, on='key')
  14. Out[81]:
  15. key lval rval
  16. 0 foo 1 4
  17. 1 foo 1 5
  18. 2 foo 2 4
  19. 3 foo 2 5

append方法

在DataFrame中增加一列:

  1. In [82]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])
  2. In [83]: df
  3. Out[83]:
  4. A B C D
  5. 0 1.346061 1.511763 1.627081 -0.990582
  6. 1 -0.441652 1.211526 0.268520 0.024580
  7. 2 -1.577585 0.396823 -0.105381 -0.532532
  8. 3 1.453749 1.208843 -0.080952 -0.264610
  9. 4 -0.727965 -0.589346 0.339969 -0.693205
  10. 5 -0.339355 0.593616 0.884345 1.591431
  11. 6 0.141809 0.220390 0.435589 0.192451
  12. 7 -0.096701 0.803351 1.715071 -0.708758
  13. In [84]: s = df.iloc[3]
  14. In [85]: df.append(s, ignore_index=True)
  15. Out[85]:
  16. A B C D
  17. 0 1.346061 1.511763 1.627081 -0.990582
  18. 1 -0.441652 1.211526 0.268520 0.024580
  19. 2 -1.577585 0.396823 -0.105381 -0.532532
  20. 3 1.453749 1.208843 -0.080952 -0.264610
  21. 4 -0.727965 -0.589346 0.339969 -0.693205
  22. 5 -0.339355 0.593616 0.884345 1.591431
  23. 6 0.141809 0.220390 0.435589 0.192451
  24. 7 -0.096701 0.803351 1.715071 -0.708758

分组(grouping)

在”group by”的时候涉及到以下几步:

  • Spliting 按条件分割数据
  • Applying 在每组上应用函数
  • Combing 合并成一个数据集
  1. In [86]: df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
  2. ....: 'foo', 'bar', 'foo', 'foo'],
  3. ....: 'B' : ['one', 'one', 'two', 'three',
  4. ....: 'two', 'two', 'one', 'three'],
  5. ....: 'C' : np.random.randn(8),
  6. ....: 'D' : np.random.randn(8)})
  7. ....:
  8. In [87]: df
  9. Out[87]:
  10. A B C D
  11. 0 foo one -1.202872 -0.055224
  12. 1 bar one -1.814470 2.395985
  13. 2 foo two 1.018601 1.552825
  14. 3 bar three -0.595447 0.166599
  15. 4 foo two 1.395433 0.047609
  16. 5 bar two -0.392670 -0.136473
  17. 6 foo one 0.007207 -0.561757
  18. 7 foo three 1.928123 -1.623033

先分组然后应用sum函数:

  1. In [88]: df.groupby('A').sum()
  2. Out[88]:
  3. C D
  4. A
  5. bar -2.802588 2.42611
  6. foo 3.146492 -0.63958

通过多列分组并生成层次索引,然后应用函数:

  1. In [89]: df.groupby(['A','B']).sum()
  2. Out[89]:
  3. C D
  4. A B
  5. bar one -1.814470 2.395985
  6. three -0.595447 0.166599
  7. two -0.392670 -0.136473
  8. foo one -1.195665 -0.616981
  9. three 1.928123 -1.623033
  10. two 2.414034 1.600434

groupby、Grouper和agg函数的使用(重要重要重要!!!)

(1) groupby && Grouper

  1. import pandas as pd
  2. df = pd.read_excel("https://github.com/chris1610/pbpython/blob/master/data/sample-salesv3.xlsx?raw=True")
  3. df["date"] = pd.to_datetime(df['date'])
  4. df.head()

10分钟pandas教程 - 图1
统计’ext price’这个属性在每个月的累和(sum)值,resample 只有在index为date类型的时候才能用:

  1. df.set_index('date').resample('M')['ext price'].sum()
  1. date
  2. 2014-01-31 185361.66
  3. 2014-02-28 146211.62
  4. 2014-03-31 203921.38
  5. 2014-04-30 174574.11
  6. 2014-05-31 165418.55
  7. 2014-06-30 174089.33
  8. 2014-07-31 191662.11
  9. 2014-08-31 153778.59
  10. 2014-09-30 168443.17
  11. 2014-10-31 171495.32
  12. 2014-11-30 119961.22
  13. 2014-12-31 163867.26
  14. Freq: M, Name: ext price, dtype: float64

进一步的,我们想知道每个用户每个月的sum值,那么就需要一个groupby了

  1. # df.set_index('date').groupby('name')['ext price'].resample("M").sum()
  2. df.groupby(['name', pd.Grouper(key='date', freq='M')])['ext price'].sum()
  1. name date
  2. Barton LLC 2014-01-31 6177.57
  3. 2014-02-28 12218.03
  4. 2014-03-31 3513.53
  5. 2014-04-30 11474.20
  6. 2014-05-31 10220.17
  7. 2014-06-30 10463.73
  8. 2014-07-31 6750.48
  9. 2014-08-31 17541.46
  10. 2014-09-30 14053.61
  11. 2014-10-31 9351.68
  12. 2014-11-30 4901.14
  13. 2014-12-31 2772.90
  14. Cronin, Oberbrunner and Spencer 2014-01-31 1141.75
  15. 2014-02-28 13976.26
  16. 2014-03-31 11691.62
  17. 2014-04-30 3685.44
  18. 2014-05-31 6760.11
  19. 2014-06-30 5379.67
  20. 2014-07-31 6020.30
  21. 2014-08-31 5399.58
  22. 2014-09-30 12693.74
  23. 2014-10-31 9324.37
  24. 2014-11-30 6021.11
  25. 2014-12-31 7640.60
  26. Frami, Hills and Schmidt 2014-01-31 5112.34
  27. 2014-02-28 4124.53
  28. 2014-03-31 10397.44
  29. 2014-04-30 5036.18
  30. 2014-05-31 4097.87
  31. 2014-06-30 13192.19
  32. ...
  33. Trantow-Barrows 2014-07-31 11987.34
  34. 2014-08-31 17251.65
  35. 2014-09-30 6992.48
  36. 2014-10-31 10064.27
  37. 2014-11-30 6550.10
  38. 2014-12-31 10124.23
  39. White-Trantow 2014-01-31 13703.77
  40. 2014-02-28 11783.98
  41. 2014-03-31 8583.05
  42. 2014-04-30 19009.20
  43. 2014-05-31 5877.29
  44. 2014-06-30 14791.32
  45. 2014-07-31 10242.62
  46. 2014-08-31 12287.21
  47. 2014-09-30 5315.16
  48. 2014-10-31 19896.85
  49. 2014-11-30 9544.61
  50. 2014-12-31 4806.93
  51. Will LLC 2014-01-31 20953.87
  52. 2014-02-28 13613.06
  53. 2014-03-31 9838.93
  54. 2014-04-30 6094.94
  55. 2014-05-31 11856.95
  56. 2014-06-30 2419.52
  57. 2014-07-31 11017.54
  58. 2014-08-31 1439.82
  59. 2014-09-30 4345.99
  60. 2014-10-31 7085.33
  61. 2014-11-30 3210.44
  62. 2014-12-31 12561.21
  63. Name: ext price, Length: 240, dtype: float64

显然,这种写法多敲了很多次键盘,那么它的好处是啥呢?
首先,逻辑上更加直接,当你敲代码完成以上统计的时候,你首先想到的就是groupby操作,而set_index, resample好像不会立马想到。想到了groupby这个’动作’之后,你就会紧接着想按照哪个key来操作,此时你只需要用字符串,或者Grouper把key定义好就行了。最后使用聚合函数,就得到了结果。所以,从人类的思考角度看,后者更容易记忆。
Grouper里的freq可以方便的改成其他周期参数(resample也可以),比如:

  1. # 按照年度,且截止到12月最后一天统计ext price的sum值
  2. df.groupby(['name', pd.Grouper(key='date', freq='A-DEC')])['ext price'].sum()
  1. name date
  2. Barton LLC 2014-12-31 109438.50
  3. Cronin, Oberbrunner and Spencer 2014-12-31 89734.55
  4. Frami, Hills and Schmidt 2014-12-31 103569.59
  5. Fritsch, Russel and Anderson 2014-12-31 112214.71
  6. Halvorson, Crona and Champlin 2014-12-31 70004.36
  7. Herman LLC 2014-12-31 82865.00
  8. Jerde-Hilpert 2014-12-31 112591.43
  9. Kassulke, Ondricka and Metz 2014-12-31 86451.07
  10. Keeling LLC 2014-12-31 100934.30
  11. Kiehn-Spinka 2014-12-31 99608.77
  12. Koepp Ltd 2014-12-31 103660.54
  13. Kuhn-Gusikowski 2014-12-31 91094.28
  14. Kulas Inc 2014-12-31 137351.96
  15. Pollich LLC 2014-12-31 87347.18
  16. Purdy-Kunde 2014-12-31 77898.21
  17. Sanford and Sons 2014-12-31 98822.98
  18. Stokes LLC 2014-12-31 91535.92
  19. Trantow-Barrows 2014-12-31 123381.38
  20. White-Trantow 2014-12-31 135841.99
  21. Will LLC 2014-12-31 104437.60
  22. Name: ext price, dtype: float64

(2) agg

从0.20.1开始,pandas引入了agg函数,它提供基于列的聚合操作。而groupby可以看做是基于行,或者说index的聚合操作。

从实现上看,groupby返回的是一个DataFrameGroupBy结构,这个结构必须调用聚合函数(如sum)之后,才会得到结构为Series的数据结果。
而agg是DataFrame的直接方法,返回的也是一个DataFrame。当然,很多功能用sum、mean等等也可以实现。但是agg更加简洁, 而且传给它的函数可以是字符串,也可以自定义,参数是column对应的子DataFrame
举个例子:

  1. df[["ext price", "quantity", "unit price"]].agg(['sum', 'mean'])

你还可以针对不同的列使用不同的聚合函数:

  1. df.agg({'ext price': ['sum', 'mean'], 'quantity': ['sum', 'mean'], 'unit price': ['mean']})

自定义函数怎么用呢,也是so easy。比如,我想统计sku中,购买次数最多的产品编号,可以这样做:

  1. # 这里的x是sku对应的column
  2. get_max = lambda x: x.value_counts(dropna=False).index[0]
  3. df.agg({'ext price': ['sum', 'mean'],
  4. 'quantity': ['sum', 'mean'],
  5. 'unit price': ['mean'],
  6. 'sku': [get_max]})

10分钟pandas教程 - 图2

重塑(reshape)

stack方法

  1. In [90]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
  2. ....: 'foo', 'foo', 'qux', 'qux'],
  3. ....: ['one', 'two', 'one', 'two',
  4. ....: 'one', 'two', 'one', 'two']]))
  5. ....:
  6. In [91]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
  7. In [92]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])
  8. In [93]: df2 = df[:4]
  9. In [94]: df2
  10. Out[94]:
  11. A B
  12. first second
  13. bar one 0.029399 -0.542108
  14. two 0.282696 -0.087302
  15. baz one -1.575170 1.771208
  16. two 0.816482 1.100230

stack方法用列标签新增一层索引:

  1. In [95]: stacked = df2.stack()
  2. In [96]: stacked
  3. Out[96]:
  4. first second
  5. bar one A 0.029399
  6. B -0.542108
  7. two A 0.282696
  8. B -0.087302
  9. baz one A -1.575170
  10. B 1.771208
  11. two A 0.816482
  12. B 1.100230
  13. dtype: float64

stack方法的逆操作为unstack,默认解压最后一层:

  1. In [97]: stacked.unstack()
  2. Out[97]:
  3. A B
  4. first second
  5. bar one 0.029399 -0.542108
  6. two 0.282696 -0.087302
  7. baz one -1.575170 1.771208
  8. two 0.816482 1.100230
  9. In [98]: stacked.unstack(1)
  10. Out[98]:
  11. second one two
  12. first
  13. bar A 0.029399 0.282696
  14. B -0.542108 -0.087302
  15. baz A -1.575170 0.816482
  16. B 1.771208 1.100230
  17. In [99]: stacked.unstack(0)
  18. Out[99]:
  19. first bar baz
  20. second
  21. one A 0.029399 -1.575170
  22. B -0.542108 1.771208
  23. two A 0.282696 0.816482
  24. B -0.087302 1.100230

透视表(Pivot table)

  1. In [100]: df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,
  2. .....: 'B' : ['A', 'B', 'C'] * 4,
  3. .....: 'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
  4. .....: 'D' : np.random.randn(12),
  5. .....: 'E' : np.random.randn(12)})
  6. .....:
  7. In [101]: df
  8. Out[101]:
  9. A B C D E
  10. 0 one A foo 1.418757 -0.179666
  11. 1 one B foo -1.879024 1.291836
  12. 2 two C foo 0.536826 -0.009614
  13. 3 three A bar 1.006160 0.392149
  14. 4 one B bar -0.029716 0.264599
  15. 5 one C bar -1.146178 -0.057409
  16. 6 two A foo 0.100900 -1.425638
  17. 7 three B foo -1.035018 1.024098
  18. 8 one C foo 0.314665 -0.106062
  19. 9 one A bar -0.773723 1.824375
  20. 10 two B bar -1.170653 0.595974
  21. 11 three C bar 0.648740 1.167115

可以通过pivot_table方法很轻松的透视数据:

  1. In [102]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
  2. Out[102]:
  3. C bar foo
  4. A B
  5. one A -0.773723 1.418757
  6. B -0.029716 -1.879024
  7. C -1.146178 0.314665
  8. three A 1.006160 NaN
  9. B NaN -1.035018
  10. C 0.648740 NaN
  11. two A NaN 0.100900
  12. B -1.170653 NaN
  13. C NaN 0.536826

时间序列(Time Series)

pandas 拥有简单,强大,高效的函数用来处理频率转换中的重采样问题(例如将秒数据转换为5分钟数据)。

  1. In [103]: rng = pd.date_range('1/1/2012', periods=100, freq='S')
  2. In [104]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)
  3. In [105]: ts.resample('5Min').sum()
  4. Out[105]:
  5. 2012-01-01 25083
  6. Freq: 5T, dtype: int64

时区表示:

  1. In [106]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')
  2. In [107]: ts = pd.Series(np.random.randn(len(rng)), rng)
  3. In [108]: ts
  4. Out[108]:
  5. 2012-03-06 0.464000
  6. 2012-03-07 0.227371
  7. 2012-03-08 -0.496922
  8. 2012-03-09 0.306389
  9. 2012-03-10 -2.290613
  10. Freq: D, dtype: float64
  11. In [109]: ts_utc = ts.tz_localize('UTC')
  12. In [110]: ts_utc
  13. Out[110]:
  14. 2012-03-06 00:00:00+00:00 0.464000
  15. 2012-03-07 00:00:00+00:00 0.227371
  16. 2012-03-08 00:00:00+00:00 -0.496922
  17. 2012-03-09 00:00:00+00:00 0.306389
  18. 2012-03-10 00:00:00+00:00 -2.290613
  19. Freq: D, dtype: float64

转换时区:

  1. In [111]: ts_utc.tz_convert('US/Eastern')
  2. Out[111]:
  3. 2012-03-05 19:00:00-05:00 0.464000
  4. 2012-03-06 19:00:00-05:00 0.227371
  5. 2012-03-07 19:00:00-05:00 -0.496922
  6. 2012-03-08 19:00:00-05:00 0.306389
  7. 2012-03-09 19:00:00-05:00 -2.290613
  8. Freq: D, dtype: float64

时区跨度转换:

  1. In [112]: rng = pd.date_range('1/1/2012', periods=5, freq='M')
  2. In [113]: ts = pd.Series(np.random.randn(len(rng)), index=rng)
  3. In [114]: ts
  4. Out[114]:
  5. 2012-01-31 -1.134623
  6. 2012-02-29 -1.561819
  7. 2012-03-31 -0.260838
  8. 2012-04-30 0.281957
  9. 2012-05-31 1.523962
  10. Freq: M, dtype: float64
  11. In [115]: ps = ts.to_period()
  12. In [116]: ps
  13. Out[116]:
  14. 2012-01 -1.134623
  15. 2012-02 -1.561819
  16. 2012-03 -0.260838
  17. 2012-04 0.281957
  18. 2012-05 1.523962
  19. Freq: M, dtype: float64
  20. In [117]: ps.to_timestamp()
  21. Out[117]:
  22. 2012-01-01 -1.134623
  23. 2012-02-01 -1.561819
  24. 2012-03-01 -0.260838
  25. 2012-04-01 0.281957
  26. 2012-05-01 1.523962
  27. Freq: MS, dtype: float64

period和timestamp之间的转换让某些算术函数应用起来非常方便。下面的例子将一个quarterly frequency with year ending in November 转化成 9am of the end of the month following the quarter end:

  1. In [118]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')
  2. In [119]: ts = pd.Series(np.random.randn(len(prng)), prng)
  3. In [120]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9
  4. In [121]: ts.head()
  5. Out[121]:
  6. 1990-03-01 09:00 -0.902937
  7. 1990-06-01 09:00 0.068159
  8. 1990-09-01 09:00 -0.057873
  9. 1990-12-01 09:00 -0.368204
  10. 1991-03-01 09:00 -1.144073
  11. Freq: H, dtype: float64

Categoricals

从0.15版开始,DateFrame已经包含了categorical类型

将原始数据转换为categorical类型:

  1. In [123]: df["grade"] = df["raw_grade"].astype("category")
  2. In [124]: df["grade"]
  3. Out[124]:
  4. 0 a
  5. 1 b
  6. 2 b
  7. 3 a
  8. 4 a
  9. 5 e
  10. Name: grade, dtype: category
  11. Categories (3, object): [a, b, e]

重命名categorical类型:

  1. In [125]: df["grade"].cat.categories = ["very good","good","very bad"]

重新排列并新增缺失数据:

  1. In [126]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])
  2. In [127]: df["grade"]
  3. Out[127]:
  4. 0 very good
  5. 1 good
  6. 2 good
  7. 3 very good
  8. 4 very good
  9. 5 very bad
  10. Name: grade, dtype: category
  11. Categories (5, object): [very bad, bad, medium, good, very good]

排序:

  1. In [128]: df.sort_values(by="grade")
  2. Out[128]:
  3. id raw_grade grade
  4. 5 6 e very bad
  5. 1 2 b good
  6. 2 3 b good
  7. 0 1 a very good
  8. 3 4 a very good
  9. 4 5 a very good

分组:

  1. In [129]: df.groupby("grade").size()
  2. Out[129]:
  3. grade
  4. very bad 1
  5. bad 0
  6. medium 0
  7. good 2
  8. very good 3
  9. dtype: int64

画图

  1. In [130]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
  2. In [131]: ts = ts.cumsum()
  3. In [132]: ts.plot()
  4. Out[132]: <matplotlib.axes._subplots.AxesSubplot at 0x10efd5a90>

10分钟pandas教程 - 图3

在DataFrame中画出所有列:

  1. In [133]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
  2. .....: columns=['A', 'B', 'C', 'D'])
  3. .....:
  4. In [134]: df = df.cumsum()
  5. In [135]: plt.figure(); df.plot(); plt.legend(loc='best')
  6. Out[135]: <matplotlib.legend.Legend at 0x112854d90>

10分钟pandas教程 - 图4

文件输入输出获取数据(Getting Data In/Out)

csv

将数据写入一个csv文件:

  1. In [136]: df.to_csv('foo.csv')

读取csv数据文件:

  1. In [137]: pd.read_csv('foo.csv')
  2. Out[137]:
  3. Unnamed: 0 A B C D
  4. 0 2000-01-01 0.266457 -0.399641 -0.219582 1.186860
  5. 1 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
  6. 2 2000-01-03 -1.734933 0.530468 2.060811 -0.515536
  7. 3 2000-01-04 -1.555121 1.452620 0.239859 -1.156896
  8. 4 2000-01-05 0.578117 0.511371 0.103552 -2.428202
  9. 5 2000-01-06 0.478344 0.449933 -0.741620 -1.962409
  10. 6 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753
  11. .. ... ... ... ... ...
  12. 993 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940
  13. 994 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107
  14. 995 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
  15. 996 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
  16. 997 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
  17. 998 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
  18. 999 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368
  19. [1000 rows x 5 columns]

HDF5

写入HDF5:

  1. In [138]: df.to_hdf('foo.h5','df')

读取HDF5文件:

  1. In [139]: pd.read_hdf('foo.h5','df')
  2. Out[139]:
  3. A B C D
  4. 2000-01-01 0.266457 -0.399641 -0.219582 1.186860
  5. 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
  6. 2000-01-03 -1.734933 0.530468 2.060811 -0.515536
  7. 2000-01-04 -1.555121 1.452620 0.239859 -1.156896
  8. 2000-01-05 0.578117 0.511371 0.103552 -2.428202
  9. 2000-01-06 0.478344 0.449933 -0.741620 -1.962409
  10. 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753
  11. ... ... ... ... ...
  12. 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940
  13. 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107
  14. 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
  15. 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
  16. 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
  17. 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
  18. 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368
  19. [1000 rows x 4 columns]

Excel

写入excel:

  1. In [140]: df.to_excel('foo.xlsx', sheet_name='Sheet1')

读取Excel:

  1. In [141]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])
  2. Out[141]:
  3. A B C D
  4. 2000-01-01 0.266457 -0.399641 -0.219582 1.186860
  5. 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
  6. 2000-01-03 -1.734933 0.530468 2.060811 -0.515536
  7. 2000-01-04 -1.555121 1.452620 0.239859 -1.156896
  8. 2000-01-05 0.578117 0.511371 0.103552 -2.428202
  9. 2000-01-06 0.478344 0.449933 -0.741620 -1.962409
  10. 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753
  11. ... ... ... ... ...
  12. 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940
  13. 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107
  14. 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
  15. 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
  16. 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
  17. 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
  18. 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368
  19. [1000 rows x 4 columns]