变换的作用主要是模型的变化以及摄像头成像

1.2D变换:

1.1齐次坐标概念:

  1. 齐次坐标就是将一个原本是n维的向量用一个n+1维向量来表示,是指一个用于投影几何里的坐标系统,如同用于欧氏几何里的笛卡儿坐标一般。<br />**举例:**<br />当要平移一个坐标,写作:![image.png](https://cdn.nlark.com/yuque/0/2022/png/26331341/1647501417636-5a49034b-1962-4219-86e6-7b9352ed3738.png#clientId=u09f99945-c75b-4&crop=0&crop=0&crop=1&crop=1&from=paste&height=337&id=ub3ee0a7c&margin=%5Bobject%20Object%5D&name=image.png&originHeight=736&originWidth=1250&originalType=binary&ratio=1&rotation=0&showTitle=false&size=193958&status=done&style=none&taskId=u988e9694-0207-49d2-8178-5a98129e7ea&title=&width=573)<br />如果要把方程写作矩阵:<br />![image.png](https://cdn.nlark.com/yuque/0/2022/png/26331341/1647501462004-59f34ebe-4c93-49d6-bc7e-6917e3f2f950.png#clientId=u09f99945-c75b-4&crop=0&crop=0&crop=1&crop=1&from=paste&height=205&id=u89950aef&margin=%5Bobject%20Object%5D&name=image.png&originHeight=236&originWidth=631&originalType=binary&ratio=1&rotation=0&showTitle=false&size=24212&status=done&style=none&taskId=ud342c8cb-a8a6-47b3-9088-e03573d04ba&title=&width=547)<br />这里的就不属于线性变换,需要tx、ty加入到矩阵中,写作:<br />![image.png](https://cdn.nlark.com/yuque/0/2022/png/26331341/1647501538235-e3b673da-52cd-4a51-bdc2-c65321d15950.png#clientId=u09f99945-c75b-4&crop=0&crop=0&crop=1&crop=1&from=paste&height=202&id=u4a18797a&margin=%5Bobject%20Object%5D&name=image.png&originHeight=249&originWidth=641&originalType=binary&ratio=1&rotation=0&showTitle=false&size=22225&status=done&style=none&taskId=u1172ab02-0d0f-4c4b-be57-77dbb442346&title=&width=521)<br />这里为x、y新增了一个坐标1,向量x、y则新增一个0,1代表坐标,0代表向量(向量平移,向量本身不变):<br />![image.png](https://cdn.nlark.com/yuque/0/2022/png/26331341/1647501613696-3f136d95-c92e-428e-9799-1dfec25166ca.png#clientId=u09f99945-c75b-4&crop=0&crop=0&crop=1&crop=1&from=paste&height=145&id=u6282dbff&margin=%5Bobject%20Object%5D&name=image.png&originHeight=189&originWidth=611&originalType=binary&ratio=1&rotation=0&showTitle=false&size=18037&status=done&style=none&taskId=ua903b1a3-704a-4ab1-9ec4-5e788e52e81&title=&width=468)<br />这里有思考问题,点+点 = 中点,因为要将W归为1,所以要x、y要除以w:<br />![image.png](https://cdn.nlark.com/yuque/0/2022/png/26331341/1647501661406-5292eb2b-d2a1-4db5-b11e-237c23b4c44a.png#clientId=u09f99945-c75b-4&crop=0&crop=0&crop=1&crop=1&from=paste&height=365&id=u7397d92c&margin=%5Bobject%20Object%5D&name=image.png&originHeight=753&originWidth=1169&originalType=binary&ratio=1&rotation=0&showTitle=false&size=93213&status=done&style=none&taskId=ubf2c058d-9aa1-48b4-8e7a-b524e16363a&title=&width=566)

1.2 缩放变换:

image.png
image.png
切割变换Shear Matrix:
image.png

1.3 旋转变换:

假设正方形边长为1,可以根据旋转边长不变,根据夹角θ求出对边sinθ、斜边cosθ长度,从而得出向量位移信息,进一步得出变换矩阵。
image.png

1.4平移变换:

平移变换引入齐次坐标概念:
image.png
image.png

1.5变换矩阵总结:

image.png

2.3D变换:

3D变换与2D变换相似,多一个Z方向坐标,引入齐次坐标写做:image.png

齐次坐标中,(x,y,z,1)是一个点,那么,当k!=0 , z!=0时,
(kx,ky,kz,k) 和 (xz,yz,z^2,z) 在齐次坐标中,3者都是表示同一个点
(1,0,0,1) = (2,0,0,2) =>(1,0,0)
image.png