习题6.2
写出Logistic回归模型学习的梯度下降算法。
解答:
对于Logistic模型:
对数似然函数为:
似然函数求偏导,可得
梯度函数为:
Logistic回归模型学习的梯度下降算法:
(1) 取初始值,置 k=0
(2) 计算
(3) 计算梯度,当
时,停止迭代,令
;否则,求
,使得
(4) 置,计算
,当
或
时,停止迭代,令
(5) 否则,置 k=k+1,转(3)
%matplotlib inline
import numpy as np
import time
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from pylab import mpl
# 图像显示中文
mpl.rcParams['font.sans-serif'] = ['Microsoft YaHei']
class LogisticRegression:
def __init__(self, learn_rate=0.1, max_iter=10000, tol=1e-2):
self.learn_rate = learn_rate # 学习率
self.max_iter = max_iter # 迭代次数
self.tol = tol # 迭代停止阈值
self.w = None # 权重
def preprocessing(self, X):
"""将原始X末尾加上一列,该列数值全部为1"""
row = X.shape[0]
y = np.ones(row).reshape(row, 1)
X_prepro = np.hstack((X, y))
return X_prepro
def sigmod(self, x):
return 1 / (1 + np.exp(-x))
def fit(self, X_train, y_train):
X = self.preprocessing(X_train)
y = y_train.T
# 初始化权重w
self.w = np.array([[0] * X.shape[1]], dtype=np.float)
k = 0
for loop in range(self.max_iter):
# 计算梯度
z = np.dot(X, self.w.T)
grad = X * (y - self.sigmod(z))
grad = grad.sum(axis=0)
# 利用梯度的绝对值作为迭代中止的条件
if (np.abs(grad) <= self.tol).all():
break
else:
# 更新权重w 梯度上升——求极大值
self.w += self.learn_rate * grad
k += 1
print("迭代次数:{}次".format(k))
print("最终梯度:{}".format(grad))
print("最终权重:{}".format(self.w[0]))
def predict(self, x):
p = self.sigmod(np.dot(self.preprocessing(x), self.w.T))
print("Y=1的概率被估计为:{:.2%}".format(p[0][0])) # 调用score时,注释掉
p[np.where(p > 0.5)] = 1
p[np.where(p < 0.5)] = 0
return p
def score(self, X, y):
y_c = self.predict(X)
error_rate = np.sum(np.abs(y_c - y.T)) / y_c.shape[0]
return 1 - error_rate
def draw(self, X, y):
# 分离正负实例点
y = y[0]
X_po = X[np.where(y == 1)]
X_ne = X[np.where(y == 0)]
# 绘制数据集散点图
ax = plt.axes(projection='3d')
x_1 = X_po[0, :]
y_1 = X_po[1, :]
z_1 = X_po[2, :]
x_2 = X_ne[0, :]
y_2 = X_ne[1, :]
z_2 = X_ne[2, :]
ax.scatter(x_1, y_1, z_1, c="r", label="正实例")
ax.scatter(x_2, y_2, z_2, c="b", label="负实例")
ax.legend(loc='best')
# 绘制p=0.5的区分平面
x = np.linspace(-3, 3, 3)
y = np.linspace(-3, 3, 3)
x_3, y_3 = np.meshgrid(x, y)
a, b, c, d = self.w[0]
z_3 = -(a * x_3 + b * y_3 + d) / c
ax.plot_surface(x_3, y_3, z_3, alpha=0.5) # 调节透明度
plt.show()
# 训练数据集
X_train = np.array([[3, 3, 3], [4, 3, 2], [2, 1, 2], [1, 1, 1], [-1, 0, 1],[2, -2, 1]])
y_train = np.array([[1, 1, 1, 0, 0, 0]])
# 构建实例,进行训练
clf = LogisticRegression()
clf.fit(X_train, y_train)
clf.draw(X_train, y_train)
迭代次数:3232次
最终梯度:[ 0.00144779 0.00046133 0.00490279 -0.00999848]
最终权重:[ 2.96908597 1.60115396 5.04477438 -13.43744079]
**