一、优化

1. 扩展序列化算法

序列化,反序列化主要用在消息正文的转换上

  • 序列化时,需要将 Java 对象变为要传输的数据(可以是 byte[],或 json 等,最终都需要变成 byte[])
  • 反序列化时,需要将传入的正文数据还原成 Java 对象,便于处理

目前的代码仅支持 Java 自带的序列化,反序列化机制,核心代码如下

  1. // 反序列化
  2. byte[] body = new byte[bodyLength];
  3. byteByf.readBytes(body);
  4. ObjectInputStream in = new ObjectInputStream(new ByteArrayInputStream(body));
  5. Message message = (Message) in.readObject();
  6. message.setSequenceId(sequenceId);
  7. // 序列化
  8. ByteArrayOutputStream out = new ByteArrayOutputStream();
  9. new ObjectOutputStream(out).writeObject(message);
  10. byte[] bytes = out.toByteArray();

为了支持更多序列化算法,抽象一个 Serializer 接口

public interface Serializer {

    // 反序列化方法
    <T> T deserialize(Class<T> clazz, byte[] bytes);

    // 序列化方法
    <T> byte[] serialize(T object);
}

提供两个实现,我这里直接将实现加入了枚举类 Serializer.Algorithm 中

enum SerializerAlgorithm implements Serializer {
    // Java 实现
    Java {
        @Override
        public <T> T deserialize(Class<T> clazz, byte[] bytes) {
            try {
                ObjectInputStream in = 
                    new ObjectInputStream(new ByteArrayInputStream(bytes));
                Object object = in.readObject();
                return (T) object;
            } catch (IOException | ClassNotFoundException e) {
                throw new RuntimeException("SerializerAlgorithm.Java 反序列化错误", e);
            }
        }

        @Override
        public <T> byte[] serialize(T object) {
            try {
                ByteArrayOutputStream out = new ByteArrayOutputStream();
                new ObjectOutputStream(out).writeObject(object);
                return out.toByteArray();
            } catch (IOException e) {
                throw new RuntimeException("SerializerAlgorithm.Java 序列化错误", e);
            }
        }
    }, 
    // Json 实现(引入了 Gson 依赖)
    Json {
        @Override
        public <T> T deserialize(Class<T> clazz, byte[] bytes) {
            return new Gson().fromJson(new String(bytes, StandardCharsets.UTF_8), clazz);
        }

        @Override
        public <T> byte[] serialize(T object) {
            return new Gson().toJson(object).getBytes(StandardCharsets.UTF_8);
        }
    };

    // 需要从协议的字节中得到是哪种序列化算法
    public static SerializerAlgorithm getByInt(int type) {
        SerializerAlgorithm[] array = SerializerAlgorithm.values();
        if (type < 0 || type > array.length - 1) {
            throw new IllegalArgumentException("超过 SerializerAlgorithm 范围");
        }
        return array[type];
    }
}


增加配置类和配置文件

public abstract class Config {
    static Properties properties;
    static {
        try (InputStream in = Config.class.getResourceAsStream("/application.properties")) {
            properties = new Properties();
            properties.load(in);
        } catch (IOException e) {
            throw new ExceptionInInitializerError(e);
        }
    }
    public static int getServerPort() {
        String value = properties.getProperty("server.port");
        if(value == null) {
            return 8080;
        } else {
            return Integer.parseInt(value);
        }
    }
    public static Serializer.Algorithm getSerializerAlgorithm() {
        String value = properties.getProperty("serializer.algorithm");
        if(value == null) {
            return Serializer.Algorithm.Java;
        } else {
            return Serializer.Algorithm.valueOf(value);
        }
    }
}

配置文件 application.properties

serializer.algorithm=Json

修改编解码器

/**
 * 必须和 LengthFieldBasedFrameDecoder 一起使用,确保接到的 ByteBuf 消息是完整的
 */
public class MessageCodecSharable extends MessageToMessageCodec<ByteBuf, Message> {
    @Override
    public void encode(ChannelHandlerContext ctx, Message msg, List<Object> outList) throws Exception {
        ByteBuf out = ctx.alloc().buffer();
        // 1. 4 字节的魔数
        out.writeBytes(new byte[]{1, 2, 3, 4});
        // 2. 1 字节的版本,
        out.writeByte(1);
        // 3. 1 字节的序列化方式 jdk 0 , json 1
        out.writeByte(Config.getSerializerAlgorithm().ordinal());
        // 4. 1 字节的指令类型
        out.writeByte(msg.getMessageType());
        // 5. 4 个字节
        out.writeInt(msg.getSequenceId());
        // 无意义,对齐填充
        out.writeByte(0xff);
        // 6. 获取内容的字节数组
        byte[] bytes = Config.getSerializerAlgorithm().serialize(msg);
        // 7. 长度
        out.writeInt(bytes.length);
        // 8. 写入内容
        out.writeBytes(bytes);
        outList.add(out);
    }

    @Override
    protected void decode(ChannelHandlerContext ctx, ByteBuf in, List<Object> out) throws Exception {
        int magicNum = in.readInt();
        byte version = in.readByte();
        byte serializerAlgorithm = in.readByte(); // 0 或 1
        byte messageType = in.readByte(); // 0,1,2...
        int sequenceId = in.readInt();
        in.readByte();
        int length = in.readInt();
        byte[] bytes = new byte[length];
        in.readBytes(bytes, 0, length);

        // 找到反序列化算法
        Serializer.Algorithm algorithm = Serializer.Algorithm.values()[serializerAlgorithm];
        // 确定具体消息类型
        Class<? extends Message> messageClass = Message.getMessageClass(messageType);
        Message message = algorithm.deserialize(messageClass, bytes);
//        log.debug("{}, {}, {}, {}, {}, {}", magicNum, version, serializerType, messageType, sequenceId, length);
//        log.debug("{}", message);
        out.add(message);
    }
}

其中确定具体消息类型,可以根据 消息类型字节 获取到对应的 消息 class

@Data
public abstract class Message implements Serializable {

    /**
     * 根据消息类型字节,获得对应的消息 class
     * @param messageType 消息类型字节
     * @return 消息 class
     */
    public static Class<? extends Message> getMessageClass(int messageType) {
        return messageClasses.get(messageType);
    }

    private int sequenceId;

    private int messageType;

    public abstract int getMessageType();

    public static final int LoginRequestMessage = 0;
    public static final int LoginResponseMessage = 1;
    public static final int ChatRequestMessage = 2;
    public static final int ChatResponseMessage = 3;
    public static final int GroupCreateRequestMessage = 4;
    public static final int GroupCreateResponseMessage = 5;
    public static final int GroupJoinRequestMessage = 6;
    public static final int GroupJoinResponseMessage = 7;
    public static final int GroupQuitRequestMessage = 8;
    public static final int GroupQuitResponseMessage = 9;
    public static final int GroupChatRequestMessage = 10;
    public static final int GroupChatResponseMessage = 11;
    public static final int GroupMembersRequestMessage = 12;
    public static final int GroupMembersResponseMessage = 13;
    public static final int PingMessage = 14;
    public static final int PongMessage = 15;
    private static final Map<Integer, Class<? extends Message>> messageClasses = new HashMap<>();

    static {
        messageClasses.put(LoginRequestMessage, LoginRequestMessage.class);
        messageClasses.put(LoginResponseMessage, LoginResponseMessage.class);
        messageClasses.put(ChatRequestMessage, ChatRequestMessage.class);
        messageClasses.put(ChatResponseMessage, ChatResponseMessage.class);
        messageClasses.put(GroupCreateRequestMessage, GroupCreateRequestMessage.class);
        messageClasses.put(GroupCreateResponseMessage, GroupCreateResponseMessage.class);
        messageClasses.put(GroupJoinRequestMessage, GroupJoinRequestMessage.class);
        messageClasses.put(GroupJoinResponseMessage, GroupJoinResponseMessage.class);
        messageClasses.put(GroupQuitRequestMessage, GroupQuitRequestMessage.class);
        messageClasses.put(GroupQuitResponseMessage, GroupQuitResponseMessage.class);
        messageClasses.put(GroupChatRequestMessage, GroupChatRequestMessage.class);
        messageClasses.put(GroupChatResponseMessage, GroupChatResponseMessage.class);
        messageClasses.put(GroupMembersRequestMessage, GroupMembersRequestMessage.class);
        messageClasses.put(GroupMembersResponseMessage, GroupMembersResponseMessage.class);
    }
}

2. 参数调优

1. CONNECT_TIMEOUT_MILLIS

  • 属于 SocketChannal 参数
  • 用在客户端建立连接时,如果在指定毫秒内无法连接,会抛出 timeout 异常
  • SO_TIMEOUT 主要用在阻塞 IO,阻塞 IO 中 accept,read 等都是无限等待的,如果不希望永远阻塞,使用它调整超时时间
    @Slf4j
    public class TestConnectionTimeout {
       public static void main(String[] args) {
           NioEventLoopGroup group = new NioEventLoopGroup();
           try {
               Bootstrap bootstrap = new Bootstrap()
                       .group(group)
                       .option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 300)
                       .channel(NioSocketChannel.class)
                       .handler(new LoggingHandler());
               ChannelFuture future = bootstrap.connect("127.0.0.1", 8080);
               future.sync().channel().closeFuture().sync(); // 断点1
           } catch (Exception e) {
               e.printStackTrace();
               log.debug("timeout");
           } finally {
               group.shutdownGracefully();
           }
       }
    }
    
    源码部分 io.netty.channel.nio.AbstractNioChannel.AbstractNioUnsafe#connect
    image.png

2. SO_BACKLOG

属于 ServerSocketChannal 参数
image.png

  1. 第一次握手,client 发送 SYN 到 server,状态修改为 SYN_SEND,server 收到,状态改变为 SYN_REVD,并将该请求放入 sync queue 队列
  2. 第二次握手,server 回复 SYN + ACK 给 client,client 收到,状态改变为 ESTABLISHED,并发送 ACK 给 server
  3. 第三次握手,server 收到 ACK,状态改变为 ESTABLISHED,将该请求从 sync queue 放入 accept queue

linux 2.2 之前,backlog 大小包括了两个队列的大小,在 2.2 之后,分别用下面两个参数来控制

  • sync queue - 半连接队列
    • 大小通过 /proc/sys/net/ipv4/tcp_max_syn_backlog 指定,在 syncookies 启用的情况下,逻辑上没有最大值限制,这个设置便被忽略
  • accept queue - 全连接队列
    • 其大小通过 /proc/sys/net/core/somaxconn 指定,在使用 listen 函数时,内核会根据传入的 backlog 参数与系统参数,取二者的较小值
    • 如果 accpet queue 队列满了,server 将发送一个拒绝连接的错误信息到 client

netty 中可以通过服务端 ServerSocketChannel 来设置大小

option(ChannelOption.SO_BACKLOG, 值)


可以通过下面源码查看默认大小

public class DefaultServerSocketChannelConfig extends DefaultChannelConfig implements ServerSocketChannelConfig {

    protected final ServerSocket javaSocket;
    private volatile int backlog = NetUtil.SOMAXCONN;

    ...
}

image.png

演示SO_BACKLOG
课堂调试关键断点为:_io.netty.channel.nio.NioEventLoop#processSelectedKey_

oio 中更容易说明,不用 debug 模式

 public class Server {
     public static void main(String[] args) throws IOException {
         ServerSocket ss = new ServerSocket(8888, 2);
         Socket accept = ss.accept();
         System.out.println(accept);
         System.in.read();
     }
 }

客户端启动 4 个

 public class Client {
     public static void main(String[] args) throws IOException {
         try {
             Socket s = new Socket();
             System.out.println(new Date()+" connecting...");
             s.connect(new InetSocketAddress("localhost", 8888),1000);
             System.out.println(new Date()+" connected...");
             s.getOutputStream().write(1);
             System.in.read();
         } catch (IOException e) {
             System.out.println(new Date()+" connecting timeout...");
             e.printStackTrace();
         }
     }
 }

第 1,2,3 个客户端都打印,但除了第一个处于 accpet 外,其它两个都处于 accept queue 中

 Tue Apr 21 20:30:28 CST 2020 connecting...
 Tue Apr 21 20:30:28 CST 2020 connected...

第 4 个客户端连接时

 Tue Apr 21 20:53:58 CST 2020 connecting...
 Tue Apr 21 20:53:59 CST 2020 connecting timeout...
 java.net.SocketTimeoutException: connect timed out


3. ulimit -n

属于操作系统参数,在运行时设置

4. TCP_NODELAY

属于SocketChannel参数,在服务端设置

serverBootstrap.childOption(ChannelOption.TCP_NODELAY, true);

5. SO_SNDBUF & SO_RCVBUF

  • SO_SNDBUF 属于 SocketChannal 参数,作用是设置滑动窗口大小(不建议自己设置)
  • SO_RCVBUF 既可用于 SocketChannal 参数,也可以用于 ServerSocketChannal 参数(建议设置到 ServerSocketChannal 上)

6. ALLOCATOR

  • 属于 SocketChannal 参数
  • 用来分配 ByteBuf (ctx.alloc()),设置一些基本信息(池化/非池化;堆内存/直接内存)
    -Dio.netty.allocator.type=unpooled -Dio.netty.noPreferDirect=true
    
    io.netty.buffer.ByteBufUtil.java
    image.png
    image.png

7. RCVBUF_ALLOCATOR

  • 属于 SocketChannal 参数
  • 控制 netty 接收缓冲区大小
  • 负责入站数据的分配,决定入站缓冲区的大小(并可动态调整),统一采用 direct 直接内存,具体池化还是非池化由 ALLOCATOR 决定

image.png

3. RPC框架

1. 准备工作

这些代码可以认为是现成的,无需从头编写练习 为了简化起见,在原来聊天项目的基础上新增 Rpc 请求和响应消息

@Data
public abstract class Message implements Serializable {

    // 省略旧的代码

    public static final int RPC_MESSAGE_TYPE_REQUEST = 101;
    public static final int  RPC_MESSAGE_TYPE_RESPONSE = 102;

    static {
        // ...
        messageClasses.put(RPC_MESSAGE_TYPE_REQUEST, RpcRequestMessage.class);
        messageClasses.put(RPC_MESSAGE_TYPE_RESPONSE, RpcResponseMessage.class);
    }

}

cn.itcast.message.RpcRequestMessage

@Getter
@ToString(callSuper = true)
public class RpcRequestMessage extends Message {

    /**
     * 调用的接口全限定名,服务端根据它找到实现
     */
    private String interfaceName;
    /**
     * 调用接口中的方法名
     */
    private String methodName;
    /**
     * 方法返回类型
     */
    private Class<?> returnType;
    /**
     * 方法参数类型数组
     */
    private Class[] parameterTypes;
    /**
     * 方法参数值数组
     */
    private Object[] parameterValue;

    public RpcRequestMessage(int sequenceId, String interfaceName, String methodName, Class<?> returnType, Class[] parameterTypes, Object[] parameterValue) {
        super.setSequenceId(sequenceId);
        this.interfaceName = interfaceName;
        this.methodName = methodName;
        this.returnType = returnType;
        this.parameterTypes = parameterTypes;
        this.parameterValue = parameterValue;
    }

    @Override
    public int getMessageType() {
        return RPC_MESSAGE_TYPE_REQUEST;
    }
}

cn.itcast.message.RpcResponseMessage

@Data
@ToString(callSuper = true)
public class RpcResponseMessage extends Message {
    /**
     * 返回值
     */
    private Object returnValue;
    /**
     * 异常值
     */
    private Exception exceptionValue;

    @Override
    public int getMessageType() {
        return RPC_MESSAGE_TYPE_RESPONSE;
    }
}

服务器基本架子

@Slf4j
public class RpcServer {
    public static void main(String[] args) {
        NioEventLoopGroup boss = new NioEventLoopGroup();
        NioEventLoopGroup worker = new NioEventLoopGroup();
        LoggingHandler LOGGING_HANDLER = new LoggingHandler(LogLevel.DEBUG);
        MessageCodecSharable MESSAGE_CODEC = new MessageCodecSharable();

        // rpc 请求消息处理器,待实现
        RpcRequestMessageHandler RPC_HANDLER = new RpcRequestMessageHandler();
        try {
            ServerBootstrap serverBootstrap = new ServerBootstrap();
            serverBootstrap.channel(NioServerSocketChannel.class);
            serverBootstrap.group(boss, worker);
            serverBootstrap.childHandler(new ChannelInitializer<SocketChannel>() {
                @Override
                protected void initChannel(SocketChannel ch) throws Exception {
                    ch.pipeline().addLast(new ProcotolFrameDecoder());
                    ch.pipeline().addLast(LOGGING_HANDLER);
                    ch.pipeline().addLast(MESSAGE_CODEC);
                    ch.pipeline().addLast(RPC_HANDLER);
                }
            });
            Channel channel = serverBootstrap.bind(8080).sync().channel();
            channel.closeFuture().sync();
        } catch (InterruptedException e) {
            log.error("server error", e);
        } finally {
            boss.shutdownGracefully();
            worker.shutdownGracefully();
        }
    }
}

客户端基本架子

public class RpcClient {
    public static void main(String[] args) {
        NioEventLoopGroup group = new NioEventLoopGroup();
        LoggingHandler LOGGING_HANDLER = new LoggingHandler(LogLevel.DEBUG);
        MessageCodecSharable MESSAGE_CODEC = new MessageCodecSharable();

        // rpc 响应消息处理器,待实现
        RpcResponseMessageHandler RPC_HANDLER = new RpcResponseMessageHandler();
        try {
            Bootstrap bootstrap = new Bootstrap();
            bootstrap.channel(NioSocketChannel.class);
            bootstrap.group(group);
            bootstrap.handler(new ChannelInitializer<SocketChannel>() {
                @Override
                protected void initChannel(SocketChannel ch) throws Exception {
                    ch.pipeline().addLast(new ProcotolFrameDecoder());
                    ch.pipeline().addLast(LOGGING_HANDLER);
                    ch.pipeline().addLast(MESSAGE_CODEC);
                    ch.pipeline().addLast(RPC_HANDLER);
                }
            });
            Channel channel = bootstrap.connect("localhost", 8080).sync().channel();
            channel.closeFuture().sync();
        } catch (Exception e) {
            log.error("client error", e);
        } finally {
            group.shutdownGracefully();
        }
    }
}

服务器端的 service 获取

public class ServicesFactory {

    static Properties properties;
    static Map<Class<?>, Object> map = new ConcurrentHashMap<>();

    static {
        try (InputStream in = Config.class.getResourceAsStream("/application.properties")) {
            properties = new Properties();
            properties.load(in);
            Set<String> names = properties.stringPropertyNames();
            for (String name : names) {
                if (name.endsWith("Service")) {
                    Class<?> interfaceClass = Class.forName(name);
                    Class<?> instanceClass = Class.forName(properties.getProperty(name));
                    map.put(interfaceClass, instanceClass.newInstance());
                }
            }
        } catch (IOException | ClassNotFoundException | InstantiationException | IllegalAccessException e) {
            throw new ExceptionInInitializerError(e);
        }
    }

    public static <T> T getService(Class<T> interfaceClass) {
        return (T) map.get(interfaceClass);
    }
}

读取配置文件中key的接口全名,从Map中找到对应实现类

application.properties

serializer.algorithm=Json
cn.itcast.server.service.HelloService=cn.itcast.server.service.HelloServiceImpl

2. 服务端Handler

@Slf4j
@ChannelHandler.Sharable
public class RpcRequestMessageHandler extends SimpleChannelInboundHandler<RpcRequestMessage> {

    @Override
    protected void channelRead0(ChannelHandlerContext ctx, RpcRequestMessage msg) throws Exception {
        //最后需要返回RpcResponseMessage对象
        RpcResponseMessage response = new RpcResponseMessage();

        try {
            HelloService service = (HelloService) ServicesFactory.getService(Class.forName(msg.getInterfaceName()));
            Method method = service.getClass().getMethod(msg.getMethodName(), msg.getParameterTypes());
            Object value = method.invoke(service, msg.getParameterValue());

            response.setReturnValue(value);
        } catch (Exception e) {
            e.printStackTrace();
            response.setExceptionValue(e);
        }

        ctx.writeAndFlush(response);
    }
}

3. 客户端第一版

1. 客户端代码

@Slf4j
public class RpcClient {
    public static void main(String[] args) {
        NioEventLoopGroup group = new NioEventLoopGroup();
        LoggingHandler LOGGING_HANDLER = new LoggingHandler(LogLevel.DEBUG);
        MessageCodecSharable MESSAGE_CODEC = new MessageCodecSharable();
        RpcResponseMessageHandler RPC_HANDLER = new RpcResponseMessageHandler();
        try {
            Bootstrap bootstrap = new Bootstrap();
            bootstrap.channel(NioSocketChannel.class);
            bootstrap.group(group);
            bootstrap.handler(new ChannelInitializer<SocketChannel>() {
                @Override
                protected void initChannel(SocketChannel ch) throws Exception {
                    ch.pipeline().addLast(new ProcotolFrameDecoder());
                    ch.pipeline().addLast(LOGGING_HANDLER);
                    ch.pipeline().addLast(MESSAGE_CODEC);
                    ch.pipeline().addLast(RPC_HANDLER);
                }
            });
            Channel channel = bootstrap.connect("localhost", 8080).sync().channel();

            channel.writeAndFlush(new RpcRequestMessage(
                    1,
                    "cn.itcast.server.service.HelloService",
                    "sayHello",
                    String.class,
                    new Class[]{String.class},
                    new Object[]{"张三"}
            )).addListener(promise -> {
                if (!promise.isSuccess()) {
                    Throwable cause = promise.cause();
                    log.error("error", cause);
                }
            });

            channel.closeFuture().sync();
        } catch (Exception e) {
            log.error("client error", e);
        } finally {
            group.shutdownGracefully();
        }
    }
}

2. 客户端Handler

@Slf4j
@ChannelHandler.Sharable
public class RpcResponseMessageHandler extends SimpleChannelInboundHandler<RpcResponseMessage> {

    @Override
    protected void channelRead0(ChannelHandlerContext ctx, RpcResponseMessage msg) throws Exception {
        log.debug("msg:{}", msg);
    }
}

4. 客户端第二版

1. 客户端代码

@Slf4j
public class RpcClient {
    private static Channel channel;
    //可以使用锁也可以使用 volatile 关键字标注的flag判断是否以及初始化Channel
    private static final Object LOCK = new Object();
    private static volatile boolean flag = false;

    /**
     * 获取Channel(单例)
     *
     * @param
     * @return io.netty.channel.Channel
     */
    private static Channel getChannel() {
        if (!flag){
            log.debug("创建channel");
            initChannel();
            flag = true;
        }

        return channel;
    }

    public static void main(String[] args) {
        //获取HelloService实现类对象
        HelloService helloService = getProxyService(HelloService.class);
        System.out.println(helloService.sayHello("张三"));
        System.out.println(helloService.sayHello("李四"));
        System.out.println(helloService.sayHello("王五"));
    }

    /**
     * 创建Service代理对象,根据客户端的参数Class,封装为RpcRequestMessage向服务器发起RPC调用,获取的结果封装到Promise对象中,最后返回
     * @param serviceClass 
     * @return T
     */
    private static <T> T getProxyService(Class<T> serviceClass){
        Object instance = Proxy.newProxyInstance(serviceClass.getClassLoader(), new Class[]{serviceClass}, (proxy, method, args) -> {
            //自动递增 id
            int id = SequenceIdGenerator.nextId();
            Channel channel = getChannel();
            //封装数据向服务端发器调用
            RpcClient.channel.writeAndFlush(new RpcRequestMessage(
                    id,
                    serviceClass.getName(),
                    method.getName(),
                    method.getReturnType(),
                    method.getParameterTypes(),
                    args
            ));

            //通过Promise对象使 main线程与nio线程之间进行通信,异步获取返回结果
            DefaultPromise<Object> promise = new DefaultPromise<>(channel.eventLoop());
            //将promise保存到缓存中
            RpcResponseMessageHandler.PROMISES.put(id, promise);

            //等待Promise的调用完毕
            promise.await();
            if (promise.isSuccess()){
                //调用成功
                return promise.getNow();
            }else {
                // 调用失败
                throw new RuntimeException(promise.cause());
            }
        });

        return (T) instance;
    }

    /**
     * 初始化Channel
     * @param
     * @return void
     */
    private static void initChannel() {
        NioEventLoopGroup group = new NioEventLoopGroup();
        LoggingHandler LOGGING_HANDLER = new LoggingHandler(LogLevel.DEBUG);
        MessageCodecSharable MESSAGE_CODEC = new MessageCodecSharable();
        RpcResponseMessageHandler RPC_HANDLER = new RpcResponseMessageHandler();
            Bootstrap bootstrap = new Bootstrap();
            bootstrap.channel(NioSocketChannel.class);
            bootstrap.group(group);
            bootstrap.handler(new ChannelInitializer<SocketChannel>() {
                @Override
                protected void initChannel(SocketChannel ch) throws Exception {
                    ch.pipeline().addLast(new ProcotolFrameDecoder());
                    ch.pipeline().addLast(LOGGING_HANDLER);
                    ch.pipeline().addLast(MESSAGE_CODEC);
                    ch.pipeline().addLast(RPC_HANDLER);
                }
            });
        try {
            //将Channel保存
            channel = bootstrap.connect("localhost", 8080).sync().channel();
            channel.closeFuture().addListener(future -> {
                group.shutdownGracefully();
            });
        } catch (Exception e) {
            log.error("client error", e);
        }
    }
}

volatile关键字 第一:使用volatile关键字会强制将修改的值立即写入主存; 第二:使用volatile关键字的话,当线程2进行修改时,会导致线程1的工作内存中缓存变量stop的缓存行无效(反映到硬件层的话,就是CPU的L1或者L2缓存中对应的缓存行无效); 第三:由于线程1的工作内存中缓存变量stop的缓存行无效,所以线程1再次读取变量stop的值时会去主存读取。

2. 客户端Handler

@Slf4j
@ChannelHandler.Sharable
public class RpcResponseMessageHandler extends SimpleChannelInboundHandler<RpcResponseMessage> {

    //使用线程安全的 ConcurrentHashMap,用于存储客户端的Promise
    public static final Map<Integer, Promise<Object>> PROMISES = new ConcurrentHashMap<>();

    @Override
    protected void channelRead0(ChannelHandlerContext ctx, RpcResponseMessage msg) throws Exception {
        log.debug("msg:{}", msg);

        //通过SequenceId获取对应的Promise,并将其删除
        Promise<Object> promise = PROMISES.remove(msg.getSequenceId());
        if (promise != null) {
            if (msg.getExceptionValue() != null) {
                //如果服务端调用出现异常则设置错误消息
                promise.setFailure(msg.getExceptionValue());
            } else {
                //如果服务端调用成功更则设置返回值
                promise.setSuccess(msg.getReturnValue());
            }
        }
    }
}

5. 可能会出现的问题

如果在远程调用的服务中出现异常,例如

public class HelloServiceImpl implements HelloService {
    @Override
    public String sayHello(String msg) {
        int i = 1 / 0;
        return "你好, " + msg;
    }
}

当客户端发起远程调用,出现下面异常并且打印了大量的异常信息
image.png

|00000640| 41 62 73 74 72 61 63 74 43 68 61 6e 6e 65 6c 48 |AbstractChannelH|
|00000650| 61 6e 64 6c 65 72 43 6f 6e 74 65 78 74 22 2c 22 |andlerContext","|
|00000660| 6d 65 74 68 6f 64 4e 61 6d 65 22 3a 22 66 69 72 |methodName":"fir|
|00000670| 65 43 68 61 6e 6e 65 6c 52 65 61 64 22 2c 22 66 |eChannelRead","f|
|00000680| 69 6c 65 4e 61 6d 65 22 3a 22 41 62 73 74 72 61 |ileName":"Abstra|
|00000690| 63 74 43 68 61 6e 6e 65 6c 48 61 6e 64 6c 65 72 |ctChannelHandler|
|000006a0| 43 6f 6e 74 65 78 74 2e 6a 61 76 61 22 2c 22 6c |Context.java","l|
|000006b0| 69 6e 65 4e 75 6d 62 65 72 22 3a 33 35 32 7d 2c |ineNumber":352},|
|000006c0| 7b 22 64 65 63 6c 61 72 69 6e 67 43 6c 61 73 73 |{"declaringClass|
|000006d0| 22 3a 22 69 6f 2e 6e 65 74 74 79 2e 68 61 6e 64 |":"io.netty.hand|
|000006e0| 6c 65 72 2e 63 6f 64 65 63 2e 4d 65 73 73 61 67 |ler.codec.Messag|
|000006f0| 65 54 6f 4d 65 73 73 61 67 65 44 65 63 6f 64 65 |eToMessageDecode|
|00000700| 72 22 2c 22 6d 65 74 68 6f 64 4e 61 6d 65 22 3a |r","methodName":|
|00000710| 22 63 68 61 6e 6e 65 6c 52 65 61 64 22 2c 22 66 |"channelRead","f|
|00000720| 69 6c 65 4e 61 6d 65 22 3a 22 4d 65 73 73 61 67 |ileName":"Messag|
|00000730| 65 54 6f 4d 65 73 73 61 67 65 44 65 63 6f 64 65 |eToMessageDecode|
|00000740| 72 2e 6a 61 76 61 22 2c 22 6c 69 6e 65 4e 75 6d |r.java","lineNum|
|00000750| 62 65 72 22 3a 31 30 32 7d 2c 7b 22 64 65 63 6c |ber":102},{"decl|
|00000760| 61 72 69 6e 67 43 6c 61 73 73 22 3a 22 69 6f 2e |aringClass":"io.|
|00000770| 6e 65 74 74 79 2e 68 61 6e 64 6c 65 72 2e 63 6f |netty.handler.co|
|00000780| 64 65 63 2e 4d 65 73 73 61 67 65 54 6f 4d 65 73 |dec.MessageToMes|
|00000790| 73 61 67 65 43 6f 64 65 63 22 2c 22 6d 65 74 68 |sageCodec","meth|

...

出现这个问题是因为,
image.png

二、源码分析

1. 启动剖析

1. 梗概

我们就来看看 netty 中对下面的代码是怎样进行处理的

//1 netty 中使用 NioEventLoopGroup (简称 nio boss 线程)来封装线程和 selector
Selector selector = Selector.open(); 

//2 创建 NioServerSocketChannel,同时会初始化它关联的 handler,以及为原生 ssc 存储 config
NioServerSocketChannel attachment = new NioServerSocketChannel();

//3 创建 NioServerSocketChannel 时,创建了 java 原生的 ServerSocketChannel
ServerSocketChannel serverSocketChannel = ServerSocketChannel.open(); 
serverSocketChannel.configureBlocking(false);

//4 启动 nio boss 线程执行接下来的操作

//5 注册(仅关联 selector 和 NioServerSocketChannel),未关注事件
SelectionKey selectionKey = serverSocketChannel.register(selector, 0, attachment);

//6 head -> 初始化器 -> ServerBootstrapAcceptor -> tail,初始化器是一次性的,只为添加 acceptor

//7 绑定端口
serverSocketChannel.bind(new InetSocketAddress(8080));

//8 触发 channel active 事件,在 head 中关注 op_accept 事件
selectionKey.interestOps(SelectionKey.OP_ACCEPT);

入口 io.netty.bootstrap.ServerBootstrap#bind
查看启动流程
image.png

private ChannelFuture doBind(final SocketAddress localAddress) {
    // 1. 执行初始化和注册 regFuture 会由 initAndRegister 设置其是否完成,从而回调 3.2 处代码
    final ChannelFuture regFuture = initAndRegister();
    final Channel channel = regFuture.channel();
    if (regFuture.cause() != null) {
        return regFuture;
    }

    // 2. 因为是 initAndRegister 异步执行,需要分两种情况来看,调试时也需要通过 suspend 断点类型加以区分
    // 2.1 如果已经完成
    if (regFuture.isDone()) {
        ChannelPromise promise = channel.newPromise();
        // 3.1 立刻调用 doBind0
        doBind0(regFuture, channel, localAddress, promise);
        return promise;
    } 
    // 2.2 还没有完成
    else {
        final PendingRegistrationPromise promise = new PendingRegistrationPromise(channel);
        // 3.2 回调 doBind0
        regFuture.addListener(new ChannelFutureListener() {
            @Override
            public void operationComplete(ChannelFuture future) throws Exception {
                Throwable cause = future.cause();
                if (cause != null) {
                    // 处理异常...
                    promise.setFailure(cause);
                } else {
                    promise.registered();
                    // 3. 由注册线程去执行 doBind0
                    doBind0(regFuture, channel, localAddress, promise);
                }
            }
        });
        return promise;
    }
}

2. 启动流程-init

关键代码 io.netty.bootstrap.AbstractBootstrap#initAndRegister

final ChannelFuture initAndRegister() {
    Channel channel = null;
    try {
        //创建NioServerSocketChannel
        channel = channelFactory.newChannel();
        // 1.1 初始化 - 做的事就是添加一个初始化器 ChannelInitializer
        init(channel);
    } catch (Throwable t) {
        // 处理异常...
        return new DefaultChannelPromise(new FailedChannel(), GlobalEventExecutor.INSTANCE).setFailure(t);
    }

    // 1.2 注册 - 做的事就是将原生 channel 注册到 selector 上
    ChannelFuture regFuture = config().group().register(channel);
    if (regFuture.cause() != null) {
        // 处理异常...
    }
    return regFuture;
}

关键代码 io.netty.bootstrap.ServerBootstrap#init

// 这里 channel 实际上是 NioServerSocketChannel
void init(Channel channel) throws Exception {
    final Map<ChannelOption<?>, Object> options = options0();
    synchronized (options) {
        setChannelOptions(channel, options, logger);
    }

    final Map<AttributeKey<?>, Object> attrs = attrs0();
    synchronized (attrs) {
        for (Entry<AttributeKey<?>, Object> e: attrs.entrySet()) {
            @SuppressWarnings("unchecked")
            AttributeKey<Object> key = (AttributeKey<Object>) e.getKey();
            channel.attr(key).set(e.getValue());
        }
    }

    ChannelPipeline p = channel.pipeline();

    final EventLoopGroup currentChildGroup = childGroup;
    final ChannelHandler currentChildHandler = childHandler;
    final Entry<ChannelOption<?>, Object>[] currentChildOptions;
    final Entry<AttributeKey<?>, Object>[] currentChildAttrs;
    synchronized (childOptions) {
        currentChildOptions = childOptions.entrySet().toArray(newOptionArray(0));
    }
    synchronized (childAttrs) {
        currentChildAttrs = childAttrs.entrySet().toArray(newAttrArray(0));
    }

    // 为 NioServerSocketChannel 添加初始化器
    p.addLast(new ChannelInitializer<Channel>() {
        @Override
        public void initChannel(final Channel ch) throws Exception {
            final ChannelPipeline pipeline = ch.pipeline();
            ChannelHandler handler = config.handler();
            if (handler != null) {
                pipeline.addLast(handler);
            }

            // 初始化器的职责是将 ServerBootstrapAcceptor 加入至 NioServerSocketChannel
            ch.eventLoop().execute(new Runnable() {
                @Override
                public void run() {
                    pipeline.addLast(new ServerBootstrapAcceptor(
                            ch, currentChildGroup, currentChildHandler, currentChildOptions, currentChildAttrs));
                }
            });
        }
    });
}

3. 启动流程-register

关键代码 io.netty.channel.AbstractChannel.AbstractUnsafe#register

public final void register(EventLoop eventLoop, final ChannelPromise promise) {
    // 一些检查,略...

    AbstractChannel.this.eventLoop = eventLoop;

    if (eventLoop.inEventLoop()) {
        register0(promise);
    } else {
        try {
            // 首次执行 execute 方法时,会启动 nio 线程,之后注册等操作在 nio 线程上执行
            // 因为只有一个 NioServerSocketChannel 因此,也只会有一个 boss nio 线程
            // 这行代码完成的事实是 main -> nio boss 线程的切换
            eventLoop.execute(new Runnable() {
                @Override
                public void run() {
                    register0(promise);
                }
            });
        } catch (Throwable t) {
            // 日志记录...
            closeForcibly();
            closeFuture.setClosed();
            safeSetFailure(promise, t);
        }
    }
}

io.netty.channel.AbstractChannel.AbstractUnsafe#register0

private void register0(ChannelPromise promise) {
    try {
        if (!promise.setUncancellable() || !ensureOpen(promise)) {
            return;
        }
        boolean firstRegistration = neverRegistered;
        // 1.2.1 原生的 nio channel 绑定到 selector 上,注意此时没有注册 selector 关注事件,附件为 NioServerSocketChannel
        doRegister();
        neverRegistered = false;
        registered = true;

        // 1.2.2 执行 NioServerSocketChannel 初始化器的 initChannel
        pipeline.invokeHandlerAddedIfNeeded();

        // 回调 3.2 io.netty.bootstrap.AbstractBootstrap#doBind0
        safeSetSuccess(promise);
        pipeline.fireChannelRegistered();

        // 对应 server socket channel 还未绑定,isActive 为 false
        if (isActive()) {
            if (firstRegistration) {
                pipeline.fireChannelActive();
            } else if (config().isAutoRead()) {
                beginRead();
            }
        }
    } catch (Throwable t) {
        // Close the channel directly to avoid FD leak.
        closeForcibly();
        closeFuture.setClosed();
        safeSetFailure(promise, t);
    }
}

关键代码 io.netty.channel.ChannelInitializer#initChannel

private boolean initChannel(ChannelHandlerContext ctx) throws Exception {
    if (initMap.add(ctx)) { // Guard against re-entrance.
        try {
            // 1.2.2.1 执行初始化
            initChannel((C) ctx.channel());
        } catch (Throwable cause) {
            exceptionCaught(ctx, cause);
        } finally {
            // 1.2.2.2 移除初始化器
            ChannelPipeline pipeline = ctx.pipeline();
            if (pipeline.context(this) != null) {
                pipeline.remove(this);
            }
        }
        return true;
    }
    return false;
}

4. 启动流程-doBind

关键代码 io.netty.bootstrap.AbstractBootstrap#doBind0

// 3.1 或 3.2 执行 doBind0
private static void doBind0(
    final ChannelFuture regFuture, final Channel channel,
    final SocketAddress localAddress, final ChannelPromise promise) {

    channel.eventLoop().execute(new Runnable() {
        @Override
        public void run() {
            if (regFuture.isSuccess()) {
                channel.bind(localAddress, promise).addListener(ChannelFutureListener.CLOSE_ON_FAILURE);
            } else {
                promise.setFailure(regFuture.cause());
            }
        }
    });
}

关键代码 io.netty.channel.AbstractChannel.AbstractUnsafe#bind

public final void bind(final SocketAddress localAddress, final ChannelPromise promise) {
    assertEventLoop();

    if (!promise.setUncancellable() || !ensureOpen(promise)) {
        return;
    }

    if (Boolean.TRUE.equals(config().getOption(ChannelOption.SO_BROADCAST)) &&
        localAddress instanceof InetSocketAddress &&
        !((InetSocketAddress) localAddress).getAddress().isAnyLocalAddress() &&
        !PlatformDependent.isWindows() && !PlatformDependent.maybeSuperUser()) {
        // 记录日志...
    }

    boolean wasActive = isActive();
    try {
        // 3.3 执行端口绑定
        doBind(localAddress);
    } catch (Throwable t) {
        safeSetFailure(promise, t);
        closeIfClosed();
        return;
    }

    if (!wasActive && isActive()) {
        invokeLater(new Runnable() {
            @Override
            public void run() {
                // 3.4 触发 active 事件
                pipeline.fireChannelActive();
            }
        });
    }

    safeSetSuccess(promise);
}

关键代码 io.netty.channel.socket.nio.NioServerSocketChannel#doBind

protected void doBind(SocketAddress localAddress) throws Exception {
    if (PlatformDependent.javaVersion() >= 7) {
        javaChannel().bind(localAddress, config.getBacklog());
    } else {
        javaChannel().socket().bind(localAddress, config.getBacklog());
    }
}

5. 启动流程-关注Accept事件

关键代码 io.netty.channel.DefaultChannelPipeline.HeadContext#channelActive

public void channelActive(ChannelHandlerContext ctx) {
    ctx.fireChannelActive();
    // 触发 read (NioServerSocketChannel 上的 read 不是读取数据,只是为了触发 channel 的事件注册)
    readIfIsAutoRead();
}

关键代码 io.netty.channel.nio.AbstractNioChannel#doBeginRead

protected void doBeginRead() throws Exception {
    // Channel.read() or ChannelHandlerContext.read() was called
    final SelectionKey selectionKey = this.selectionKey;
    if (!selectionKey.isValid()) {
        return;
    }

    readPending = true;

    final int interestOps = selectionKey.interestOps();
    // readInterestOp 取值是 16,在 NioServerSocketChannel 创建时初始化好,代表关注 accept 事件
    if ((interestOps & readInterestOp) == 0) {
        selectionKey.interestOps(interestOps | readInterestOp);
    }
}


6. 整体启动流程图
image.png

2. NioEventLoop 剖析

NioEventLoop 线程不仅要处理 IO 事件,还要处理 Task(包括普通任务和定时任务),
提交任务代码 io.netty.util.concurrent.SingleThreadEventExecutor#execute

public void execute(Runnable task) {
    if (task == null) {
        throw new NullPointerException("task");
    }

    boolean inEventLoop = inEventLoop();
    // 添加任务,其中队列使用了 jctools 提供的 mpsc 无锁队列
    addTask(task);
    if (!inEventLoop) {
        // inEventLoop 如果为 false 表示由其它线程来调用 execute,即首次调用,这时需要向 eventLoop 提交首个任务,启动死循环,会执行到下面的 doStartThread
        startThread();
        if (isShutdown()) {
            // 如果已经 shutdown,做拒绝逻辑,代码略...
        }
    }

    if (!addTaskWakesUp && wakesUpForTask(task)) {
        // 如果线程由于 IO select 阻塞了,添加的任务的线程需要负责唤醒 NioEventLoop 线程
        wakeup(inEventLoop);
    }
}

唤醒 select 阻塞线程io.netty.channel.nio.NioEventLoop#wakeup

@Override
protected void wakeup(boolean inEventLoop) {
    if (!inEventLoop && wakenUp.compareAndSet(false, true)) {
        selector.wakeup();
    }
}

启动 EventLoop 主循环 io.netty.util.concurrent.SingleThreadEventExecutor#doStartThread

private void doStartThread() {
    assert thread == null;
    executor.execute(new Runnable() {
        @Override
        public void run() {
            // 将线程池的当前线程保存在成员变量中,以便后续使用
            thread = Thread.currentThread();
            if (interrupted) {
                thread.interrupt();
            }

            boolean success = false;
            updateLastExecutionTime();
            try {
                // 调用外部类 SingleThreadEventExecutor 的 run 方法,进入死循环,run 方法见下
                SingleThreadEventExecutor.this.run();
                success = true;
            } catch (Throwable t) {
                logger.warn("Unexpected exception from an event executor: ", t);
            } finally {
                // 清理工作,代码略...
            }
        }
    });
}

io.netty.channel.nio.NioEventLoop#run 主要任务是执行死循环,不断看有没有新任务,有没有 IO 事件

 protected void run() {
     for (;;) {
         try {
             try {
                 // calculateStrategy 的逻辑如下:
                 // 有任务,会执行一次 selectNow,清除上一次的 wakeup 结果,无论有没有 IO 事件,都会跳过 switch
                 // 没有任务,会匹配 SelectStrategy.SELECT,看是否应当阻塞
                 switch (selectStrategy.calculateStrategy(selectNowSupplier, hasTasks())) {
                     case SelectStrategy.CONTINUE:
                         continue;

                     case SelectStrategy.BUSY_WAIT:

                     case SelectStrategy.SELECT:
                         // 因为 IO 线程和提交任务线程都有可能执行 wakeup,而 wakeup 属于比较昂贵的操作,因此使用了一个原子布尔对象 wakenUp,它取值为 true 时,表示该由当前线程唤醒
                         // 进行 select 阻塞,并设置唤醒状态为 false
                         boolean oldWakenUp = wakenUp.getAndSet(false);

                         // 如果在这个位置,非 EventLoop 线程抢先将 wakenUp 置为 true,并 wakeup
                         // 下面的 select 方法不会阻塞
                         // 等 runAllTasks 处理完成后,到再循环进来这个阶段新增的任务会不会及时执行呢?
                         // 因为 oldWakenUp 为 true,因此下面的 select 方法就会阻塞,直到超时
                         // 才能执行,让 select 方法无谓阻塞
                         select(oldWakenUp);

                         if (wakenUp.get()) {
                             selector.wakeup();
                         }
                     default:
                 }
             } catch (IOException e) {
                 rebuildSelector0();
                 handleLoopException(e);
                 continue;
             }

             cancelledKeys = 0;
             needsToSelectAgain = false;
             // ioRatio 默认是 50
             final int ioRatio = this.ioRatio;
             if (ioRatio == 100) {
                 try {
                     processSelectedKeys();
                 } finally {
                     // ioRatio 为 100 时,总是运行完所有非 IO 任务
                     runAllTasks();
                 }
             } else {                
                 final long ioStartTime = System.nanoTime();
                 try {
                     processSelectedKeys();
                 } finally {
                     // 记录 io 事件处理耗时
                     final long ioTime = System.nanoTime() - ioStartTime;
                     // 运行非 IO 任务,一旦超时会退出 runAllTasks
                     runAllTasks(ioTime * (100 - ioRatio) / ioRatio);
                 }
             }
         } catch (Throwable t) {
             handleLoopException(t);
         }
         try {
             if (isShuttingDown()) {
                 closeAll();
                 if (confirmShutdown()) {
                     return;
                 }
             }
         } catch (Throwable t) {
             handleLoopException(t);
         }
     }
 }

⚠️ 注意
这里有个费解的地方就是 wakeup,它既可以由提交任务的线程来调用(比较好理解),也可以由 EventLoop 线程来调用(比较费解),这里要知道 wakeup 方法的效果:

  • 由非 EventLoop 线程调用,会唤醒当前在执行 select 阻塞的 EventLoop 线程
  • 由 EventLoop 自己调用,会本次的 wakeup 会取消下一次的 select 操作

参考下图
0032.png

io.netty.channel.nio.NioEventLoop#select

 private void select(boolean oldWakenUp) throws IOException {
     Selector selector = this.selector;
     try {
         int selectCnt = 0;
         long currentTimeNanos = System.nanoTime();
         // 计算等待时间
         // * 没有 scheduledTask,超时时间为 1s
         // * 有 scheduledTask,超时时间为 `下一个定时任务执行时间 - 当前时间`
         long selectDeadLineNanos = currentTimeNanos + delayNanos(currentTimeNanos);

         for (;;) {
             long timeoutMillis = (selectDeadLineNanos - currentTimeNanos + 500000L) / 1000000L;
             // 如果超时,退出循环
             if (timeoutMillis <= 0) {
                 if (selectCnt == 0) {
                     selector.selectNow();
                     selectCnt = 1;
                 }
                 break;
             }

             // 如果期间又有 task 退出循环,如果没这个判断,那么任务就会等到下次 select 超时时才能被执行
             // wakenUp.compareAndSet(false, true) 是让非 NioEventLoop 不必再执行 wakeup
             if (hasTasks() && wakenUp.compareAndSet(false, true)) {
                 selector.selectNow();
                 selectCnt = 1;
                 break;
             }

             // select 有限时阻塞
             // 注意 nio 有 bug,当 bug 出现时,select 方法即使没有时间发生,也不会阻塞住,导致不断空轮询,cpu 占用 100%
             int selectedKeys = selector.select(timeoutMillis);
             // 计数加 1
             selectCnt ++;

             // 醒来后,如果有 IO 事件、或是由非 EventLoop 线程唤醒,或者有任务,退出循环
             if (selectedKeys != 0 || oldWakenUp || wakenUp.get() || hasTasks() || hasScheduledTasks()) {
                 break;
             }
             if (Thread.interrupted()) {
                 // 线程被打断,退出循环
                 // 记录日志
                 selectCnt = 1;
                 break;
             }

             long time = System.nanoTime();
             if (time - TimeUnit.MILLISECONDS.toNanos(timeoutMillis) >= currentTimeNanos) {
                 // 如果超时,计数重置为 1,下次循环就会 break
                 selectCnt = 1;
             } 
             // 计数超过阈值,由 io.netty.selectorAutoRebuildThreshold 指定,默认 512
             // 这是为了解决 nio 空轮询 bug
             else if (SELECTOR_AUTO_REBUILD_THRESHOLD > 0 &&
                     selectCnt >= SELECTOR_AUTO_REBUILD_THRESHOLD) {
                 // 重建 selector
                 selector = selectRebuildSelector(selectCnt);
                 selectCnt = 1;
                 break;
             }

             currentTimeNanos = time;
         }

         if (selectCnt > MIN_PREMATURE_SELECTOR_RETURNS) {
             // 记录日志
         }
     } catch (CancelledKeyException e) {
         // 记录日志
     }
 }

处理 keys io.netty.channel.nio.NioEventLoop#processSelectedKeys

private void processSelectedKeys() {
    if (selectedKeys != null) {
        // 通过反射将 Selector 实现类中的就绪事件集合替换为 SelectedSelectionKeySet 
        // SelectedSelectionKeySet 底层为数组实现,可以提高遍历性能(原本为 HashSet)
        processSelectedKeysOptimized();
    } else {
        processSelectedKeysPlain(selector.selectedKeys());
    }
}

io.netty.channel.nio.NioEventLoop#processSelectedKey

private void processSelectedKey(SelectionKey k, AbstractNioChannel ch) {
    final AbstractNioChannel.NioUnsafe unsafe = ch.unsafe();
    // 当 key 取消或关闭时会导致这个 key 无效
    if (!k.isValid()) {
        // 无效时处理...
        return;
    }

    try {
        int readyOps = k.readyOps();
        // 连接事件
        if ((readyOps & SelectionKey.OP_CONNECT) != 0) {
            int ops = k.interestOps();
            ops &= ~SelectionKey.OP_CONNECT;
            k.interestOps(ops);

            unsafe.finishConnect();
        }

        // 可写事件
        if ((readyOps & SelectionKey.OP_WRITE) != 0) {
            ch.unsafe().forceFlush();
        }

        // 可读或可接入事件
        if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {
            // 如果是可接入 io.netty.channel.nio.AbstractNioMessageChannel.NioMessageUnsafe#read
            // 如果是可读 io.netty.channel.nio.AbstractNioByteChannel.NioByteUnsafe#read
            unsafe.read();
        }
    } catch (CancelledKeyException ignored) {
        unsafe.close(unsafe.voidPromise());
    }
}

3. accept 剖析

nio 中如下代码,在 netty 中的流程

//1 阻塞直到事件发生
selector.select();

Iterator<SelectionKey> iter = selector.selectedKeys().iterator();
while (iter.hasNext()) {    
    //2 拿到一个事件
    SelectionKey key = iter.next();

    //3 如果是 accept 事件
    if (key.isAcceptable()) {

        //4 执行 accept
        SocketChannel channel = serverSocketChannel.accept();
        channel.configureBlocking(false);

        //5 关注 read 事件
        channel.register(selector, SelectionKey.OP_READ);
    }
    // ...
}

先来看可接入事件处理(accept)
io.netty.channel.nio.AbstractNioMessageChannel.NioMessageUnsafe#read

public void read() {
    assert eventLoop().inEventLoop();
    final ChannelConfig config = config();
    final ChannelPipeline pipeline = pipeline();    
    final RecvByteBufAllocator.Handle allocHandle = unsafe().recvBufAllocHandle();
    allocHandle.reset(config);

    boolean closed = false;
    Throwable exception = null;
    try {
        try {
            do {
                // doReadMessages 中执行了 accept 并创建 NioSocketChannel 作为消息放入 readBuf
                // readBuf 是一个 ArrayList 用来缓存消息
                int localRead = doReadMessages(readBuf);
                if (localRead == 0) {
                    break;
                }
                if (localRead < 0) {
                    closed = true;
                    break;
                }
                // localRead 为 1,就一条消息,即接收一个客户端连接
                allocHandle.incMessagesRead(localRead);
            } while (allocHandle.continueReading());
        } catch (Throwable t) {
            exception = t;
        }

        int size = readBuf.size();
        for (int i = 0; i < size; i ++) {
            readPending = false;
            // 触发 read 事件,让 pipeline 上的 handler 处理,这时是处理
            // io.netty.bootstrap.ServerBootstrap.ServerBootstrapAcceptor#channelRead
            pipeline.fireChannelRead(readBuf.get(i));
        }
        readBuf.clear();
        allocHandle.readComplete();
        pipeline.fireChannelReadComplete();

        if (exception != null) {
            closed = closeOnReadError(exception);

            pipeline.fireExceptionCaught(exception);
        }

        if (closed) {
            inputShutdown = true;
            if (isOpen()) {
                close(voidPromise());
            }
        }
    } finally {
        if (!readPending && !config.isAutoRead()) {
            removeReadOp();
        }
    }
}

关键代码 io.netty.bootstrap.ServerBootstrap.ServerBootstrapAcceptor#channelRead

public void channelRead(ChannelHandlerContext ctx, Object msg) {
    // 这时的 msg 是 NioSocketChannel
    final Channel child = (Channel) msg;

    // NioSocketChannel 添加  childHandler 即初始化器
    child.pipeline().addLast(childHandler);

    // 设置选项
    setChannelOptions(child, childOptions, logger);

    for (Entry<AttributeKey<?>, Object> e: childAttrs) {
        child.attr((AttributeKey<Object>) e.getKey()).set(e.getValue());
    }

    try {
        // 注册 NioSocketChannel 到 nio worker 线程,接下来的处理也移交至 nio worker 线程
        childGroup.register(child).addListener(new ChannelFutureListener() {
            @Override
            public void operationComplete(ChannelFuture future) throws Exception {
                if (!future.isSuccess()) {
                    forceClose(child, future.cause());
                }
            }
        });
    } catch (Throwable t) {
        forceClose(child, t);
    }
}

又回到了熟悉的 io.netty.channel.AbstractChannel.AbstractUnsafe#register 方法

public final void register(EventLoop eventLoop, final ChannelPromise promise) {
    // 一些检查,略...

    AbstractChannel.this.eventLoop = eventLoop;

    if (eventLoop.inEventLoop()) {
        register0(promise);
    } else {
        try {
            // 这行代码完成的事实是 nio boss -> nio worker 线程的切换
            eventLoop.execute(new Runnable() {
                @Override
                public void run() {
                    register0(promise);
                }
            });
        } catch (Throwable t) {
            // 日志记录...
            closeForcibly();
            closeFuture.setClosed();
            safeSetFailure(promise, t);
        }
    }
}

io.netty.channel.AbstractChannel.AbstractUnsafe#register0

private void register0(ChannelPromise promise) {
    try {
        if (!promise.setUncancellable() || !ensureOpen(promise)) {
            return;
        }
        boolean firstRegistration = neverRegistered;
        doRegister();
        neverRegistered = false;
        registered = true;

        // 执行初始化器,执行前 pipeline 中只有 head -> 初始化器 -> tail
        pipeline.invokeHandlerAddedIfNeeded();
        // 执行后就是 head -> logging handler -> my handler -> tail

        safeSetSuccess(promise);
        pipeline.fireChannelRegistered();

        if (isActive()) {
            if (firstRegistration) {
                // 触发 pipeline 上 active 事件
                pipeline.fireChannelActive();
            } else if (config().isAutoRead()) {
                beginRead();
            }
        }
    } catch (Throwable t) {
        closeForcibly();
        closeFuture.setClosed();
        safeSetFailure(promise, t);
    }
}

回到了熟悉的代码 io.netty.channel.DefaultChannelPipeline.HeadContext#channelActive

public void channelActive(ChannelHandlerContext ctx) {
    ctx.fireChannelActive();
    // 触发 read (NioSocketChannel 这里 read,只是为了触发 channel 的事件注册,还未涉及数据读取)
    readIfIsAutoRead();
}

io.netty.channel.nio.AbstractNioChannel#doBeginRead

protected void doBeginRead() throws Exception {
    // Channel.read() or ChannelHandlerContext.read() was called
    final SelectionKey selectionKey = this.selectionKey;
    if (!selectionKey.isValid()) {
        return;
    }

    readPending = true;
    // 这时候 interestOps 是 0
    final int interestOps = selectionKey.interestOps();
    if ((interestOps & readInterestOp) == 0) {
        // 关注 read 事件
        selectionKey.interestOps(interestOps | readInterestOp);
    }
}

4. read 剖析

再来看可读事件 io.netty.channel.nio.AbstractNioByteChannel.NioByteUnsafe#read,注意发送的数据未必能够一次读完,因此会触发多次 nio read 事件,一次事件内会触发多次 pipeline read,一次事件会触发一次 pipeline read complete

 public final void read() {
     final ChannelConfig config = config();
     if (shouldBreakReadReady(config)) {
         clearReadPending();
         return;
     }
     final ChannelPipeline pipeline = pipeline();
     // io.netty.allocator.type 决定 allocator 的实现
     final ByteBufAllocator allocator = config.getAllocator();
     // 用来分配 byteBuf,确定单次读取大小
     final RecvByteBufAllocator.Handle allocHandle = recvBufAllocHandle();
     allocHandle.reset(config);

     ByteBuf byteBuf = null;
     boolean close = false;
     try {
         do {
             byteBuf = allocHandle.allocate(allocator);
             // 读取
             allocHandle.lastBytesRead(doReadBytes(byteBuf));
             if (allocHandle.lastBytesRead() <= 0) {
                 byteBuf.release();
                 byteBuf = null;
                 close = allocHandle.lastBytesRead() < 0;
                 if (close) {
                     readPending = false;
                 }
                 break;
             }

             allocHandle.incMessagesRead(1);
             readPending = false;
             // 触发 read 事件,让 pipeline 上的 handler 处理,这时是处理 NioSocketChannel 上的 handler
             pipeline.fireChannelRead(byteBuf);
             byteBuf = null;
         } 
         // 是否要继续循环
         while (allocHandle.continueReading());

         allocHandle.readComplete();
         // 触发 read complete 事件
         pipeline.fireChannelReadComplete();

         if (close) {
             closeOnRead(pipeline);
         }
     } catch (Throwable t) {
         handleReadException(pipeline, byteBuf, t, close, allocHandle);
     } finally {
         if (!readPending && !config.isAutoRead()) {
             removeReadOp();
         }
     }
 }

io.netty.channel.DefaultMaxMessagesRecvByteBufAllocator.MaxMessageHandle#continueReading(io.netty.util.UncheckedBooleanSupplier)

public boolean continueReading(UncheckedBooleanSupplier maybeMoreDataSupplier) {
    return 
        // 一般为 true
        config.isAutoRead() &&
        // respectMaybeMoreData 默认为 true
        // maybeMoreDataSupplier 的逻辑是如果预期读取字节与实际读取字节相等,返回 true
        (!respectMaybeMoreData || maybeMoreDataSupplier.get()) &&
        // 小于最大次数,maxMessagePerRead 默认 16
        totalMessages < maxMessagePerRead &&
        // 实际读到了数据
        totalBytesRead > 0;
}