由於語法渲染問題而影響閱讀體驗, 請移步博客閱讀~
本文GitPage地址
Tensorflow
##!/usr/locol/bin/python3.6
import tensorflow as tf
import numpy as np
## creat data
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data*0.1 + 0.3
#### creat tnsorflow structure start
Weights = tf.Variable(tf.random_uniform([1],-1.0,1.0))
biases = tf.Variable(tf.zeros([1]))
y = Weightess =tf.Session()
*x_data + biases
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
init = tf.initialize_all_variables()
###create tensorflow structure end ###
sess =tf.Session()
sess.run(init)
for step in range(201):
sess.run(train)
if step % 20 == 0:
print(step, sess.run(Weights),sess.run(biases))
#### add a laier###
def add_layer(inputs, in_size, out_size, activation_function=None):
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
##################
###From https://tensorflow.google.cn/get_started/premade_estimators##
#############
Enjoy~
由於語法渲染問題而影響閱讀體驗, 請移步博客閱讀~
本文GitPage地址
GitHub: Karobben
Blog:Karobben
BiliBili:史上最不正經的生物狗