© getcodify.com |
由於語法渲染問題而影響閱讀體驗, 請移步博客閱讀~
本文GitPage地址
Pandas
Basic
import pandas as pd
###read file
TB = pd.read_csv("sentence-G",sep='\t', names=None, header=None)
TB.columns = ['频率', '', 'V2', '词义', 'V3']
##DataFrame
pd.DataFrame(index=range(40),columns=['a', 'b'])
### rsult output
TB.to_csv("table",sep='\t')
data
data[0:2] #取前两行数据
len(data ) #求出一共多少行
data.columns.size #求出一共多少列
data.columns #列索引名称
data.index #行索引名称
data.ix[1] #取第2行数据
data.iloc[1] #取第2行数据
data.loc['A'] #取第行索引为”A“的一行数据,
data['x'] #取列索引为x的一列数据
## Most frequent value
data.mode()
## Any True value in this series
data['A'].any()
## All the values are True
data['A'].all()
data.loc[:,['x','z'] ] #表示选取所有的行以及columns为a,b的列;
data.loc[['A','B'],['x','z']] #表示选取'A'和'B'这两行以及columns为x,z的列的并集;
data.iloc[1:3,1:3] #数据切片操作,切连续的数据块
data.iloc[[0,2],[1,2]] #即可以自由选取行位置,和列位置对应的数据,切零散的数据块
data[data>2] #表示选取数据集中大于0的数据
data[data.x>5] #表示选取数据集中x这一列大于5的所有的行
a1=data.copy()
a1[a1['y'].isin(['6','10'])] #表显示满足条件:列y中的值包含'6','8'的所有行。
data.mean() #默认对每一列的数据求平均值;若加上参数a.mean(1)则对每一行求平均值;
data['x'].value_counts() #统计某一列x中各个值出现的次数:
data.describe() #对每一列数据进行统计,包括计数,均值,std,各个分位数等。
data.to_excel(r'E:\pypractice\Yun\doc\2.xls',sheet_name='Sheet1') #数据输出至Exceldata[0:2] #取前两行数据
### from Dictionary to DataFrame
TB = pd.Series(BB)
### DataFrame sort
TB = TB.sort_values(ascending=False)
### DataFrame merge
result = pd.concat([ Word, Sen], axis=1, sort=False)
### NaN drap
data.dropna(thresh=3) # at least 3 data we have
Skills
reference: 数据分析1480
NA count
df=pd.read_csv('titanic_train.csv')
def missing_cal(df):
"""
df :数据集
return:每个变量的缺失率
"""
missing_series = df.isnull().sum()/df.shape[0]
missing_df = pd.DataFrame(missing_series).reset_index()
missing_df = missing_df.rename(columns={'index':'col',
0:'missing_pct'})
missing_df = missing_df.sort_values('missing_pct',ascending=False).reset_index(drop=True)
return missing_df
missing_cal(df)
Drop/Fill NA
## Drop the columns or rows by NA value
data.dropna(axis=0)
data.dropna(axis=1)
## Fill the NA value by linear interpolation
data.interpolate()
## Fill te NA value with the value ahead or the next
data.fillna(method='ffill')
data.fillna(method='backfill')
idmax
df = pd.DataFrame({'Sp':['a','b','c','d','e','f'], 'Mt':['s1', 's1', 's2','s2','s2','s3'], 'Value':[1,2,3,4,5,6], 'Count':[3,2,5,10,10,6]})
df
df.iloc[df.groupby(['Mt']).apply(lambda x: x['Count'].idxmax())]
df["rank"] = df.groupby("ID")["score"].rank(method="min", ascending=False).astype(np.int64)
df[df["rank"] == 1][["ID", "class"]]
Merging DataFrame
This is one of the most feature I like in pandas since it could automatically fill the missing value with NA.
Plus, when the DataFrame goes huge, pd.concat was way faster than dataframe merge in R.
df = pd.DataFrame({'id_part':['a','b','c','d'], 'pred':[0.1,0.2,0.3,0.4], 'pred_class':['women','man','cat','dog'], 'v_id':['d1','d2','d3','d1']})
## Row
pd.concat([df,df], axis=1)
## or
df.merge(df)
## Column
pd.concat([df,df])
## or
df.append(df)
## I forget what the codes here for = =
##df.groupby(['v_id']).agg({'pred_class': [', '.join],'pred': lambda x: list(x),
## 'id_part': 'first'}).reset_index()
Deleting rows by string-match
df = pd.DataFrame({'a':[1,2,3,4], 'b':['s1', 'exp_s2', 's3','exps4'], 'c':[5,6,7,8], 'd':[3,2,5,10]})
df[df['b'].str.contains('exp')]
Sort
df = pd.DataFrame([['A',1],['A',3],['A',2],['B',5],['B',9]], columns = ['name','score'])
df.sort_values(['name','score'], ascending = [True,False])
df.groupby('name').apply(lambda x: x.sort_values('score', ascending=False)).reset_index(drop=True)
Select columns by features
drinks = pd.read_csv('data/drinks.csv')
## 选择所有数值型的列
drinks.select_dtypes(include=['number']).head()
## 选择所有字符型的列
drinks.select_dtypes(include=['object']).head()
drinks.select_dtypes(include=['number','object','category','datetime']).head()
## 用 exclude 关键字排除指定的数据类型
drinks.select_dtypes(exclude=['number']).head()
str to integer
df = pd.DataFrame({'列1':['1.1','2.2','3.3'],
'列2':['4.4','5.5','6.6'],
'列3':['7.7','8.8','-']})
df
df.astype({'列1':'float','列2':'float'}).dtypes
df = df.apply(pd.to_numeric, errors='coerce').fillna(0)
Reduce the RAM-consume
cols = ['beer_servings','continent']
small_drinks = pd.read_csv('data/drinks.csv', usecols=cols)
dtypes ={'continent':'category'}
smaller_drinks = pd.read_csv('data/drinks.csv',usecols=cols, dtype=dtypes)
根据最大的类别筛选 DataFrame
movies = pd.read_csv('data/imdb_1000.csv')
counts = movies.genre.value_counts()
movies[movies.genre.isin(counts.nlargest(3).index)].head()
split string to columns
df = pd.DataFrame({'姓名':['张 三','李 四','王 五'],
'所在地':['北京-东城区','上海-黄浦区','广州-白云区']})
df
df.姓名.str.split(' ', expand=True)
str.contain
df.['column1'].str.cotain('A')
把 Series 里的列表转换为 DataFrame
df = pd.DataFrame({'列1':['a','b','c'],'列2':[[10,20], [20,30], [30,40]]})
pd.concat([df,df_new], axis='columns')
用多个函数聚合
orders = pd.read_csv('data/chipotle.tsv', sep='\t')
orders.groupby('order_id').item_price.agg(['sum','count']).head()
分组聚合
import pandas as pd
df = pd.DataFrame({'key1':['a', 'a', 'b', 'b', 'a'],
'key2':['one', 'two', 'one', 'two', 'one'],
'data1':np.random.randn(5),
'data2':np.random.randn(5)})
df
for name, group in df.groupby('key1'):
print(name)
print(group)
dict(list(df.groupby('key1')))
通过字典或Series进行分组
people = pd.DataFrame(np.random.randn(5, 5),
columns=['a', 'b', 'c', 'd', 'e'],
index=['Joe', 'Steve', 'Wes', 'Jim', 'Travis'])
mapping = {'a':'red', 'b':'red', 'c':'blue',
'd':'blue', 'e':'red', 'f':'orange'}
by_column = people.groupby(mapping, axis=1)
by_column.sum()
Connect to the matplotlib
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
dates=pd.date_range('20180310',periods=6)
df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=['A','B','C','D'])
df.plot()
plt.show()
more for plot()
df.hist(column='A', figsize=(4,3))
df.boxplot(column='A', figsize=(4,3))
Enjoy~
由於語法渲染問題而影響閱讀體驗, 請移步博客閱讀~
本文GitPage地址
GitHub: Karobben
Blog:Karobben
BiliBili:史上最不正經的生物狗