汽车中有哪些软件?

采用AutoSAR的理念,将汽车软件拆成“传统控制”、“自动驾驶”、“智能座舱”、“非车载”四个域。
最终我们将问题转化为:
1. 这些域中,哪些是仅靠软件就能定义的;
2. 这些仅靠软件就能定义的域,又能否定义汽车。在每个域中,我们又将软件拆分为基础软件(硬件驱动、任务调度及其他中间件)和应用层软件。

传统控制域的软件

首先,该域的嵌入式软件与其所关联的设定值发生器、传感器、执行器高度相关,单独的软件难以成为功能好坏的决定因素。
其次,这类软件通常由提供控制器、执行器、智能传感器的Tier1直接开发。因为在编程中要考虑很多硬件的个性特征,所以难以形成行业通用的软件场景库,而Tier 1在对自家产品的配套软件开发中已长期积累了相当数量的代码,甚至形成了企业内部的子代码库。
这就导致想扛过软件大旗的主机厂或科技公司哪怕编程能力再强,也很难取代前者,最多采取software sharing的方式,在应用层与消费者直接相关的功能软件中参与部分开发。
显然,传统控制域无法仅凭软件来定义,且仅具备软件能力的企业也很难在此领域掀起波澜。

自动驾驶域的软件

该域的现状是,一方面底层操作系统既要安全关键,又因数据量大而需要采用动态任务及内存分配,门槛极高,多年来也只有四五家可做,难以成为引领软件定义汽车风潮的主导因素。而另一方面,尽管自动驾驶显然可以定义汽车,但暂时还没发展到可以完全依靠算法软件来定义的阶段。它在系统及硬件方面仍有众多工程化问题待解决,且当前行业话语权之争也不仅围绕软件算法,还围绕与硬件相关的计算平台和算力展开。另外如前所述,未来该域也很可能会出现与计算机行业类似的软硬件交替式发展现象。因此,我们也无法认为自动驾驶域是靠软件来定义的。

智能座舱域的软件

事实上,大多数人谈论软件定义汽车时,往往也是在谈论该域内偏向消费电子的软件功能给汽车带来的影响。对于消费电子和资本界而言,该域和手机相似,门槛低且创新空间大,是进入汽车行业的最佳入口。为了把“局”做大,甚至提出了与智能座舱配套的滑板底盘概念,认为未来的汽车 = 滑板底盘 + 智能座舱 + 路云协同。而在汽车行业内部,因为整车的议价能力降低,其他高溢价领域的门槛又太高(比如自动驾驶),所以也将智能座舱视为提升车辆利润的首要突破口。
似乎它确实具备能定义汽车的潜力?我们不妨拆成两个问题看:1.软件能否定义智能座舱?2. 智能座舱又能否定义汽车?仅就笔者个人来看,两者的答案暂时都是否定的。
首先,软件并不能定义智能座舱。还是从与智能座舱相似的手机领域切入。手机领域硬件同质化+软件差异化的商业模式确实存在,但高端手机无论是苹果、三星还是华为,都在持续迭代硬件。甚至在全世界手机厂都在共用App Store和Google play两个同质化极其严重的软件生态时,硬件似乎反而成了核心竞争力。类比来看,硬件同质化(甚至整车代工)+ 软件差异化的商业模式确实可以在汽车中实现,这种模式降低了造车门槛,但采取该模式的造出的车却难有持久力。
在硬件同质化的前提下,依靠新颖的软件功能确实能短暂满足消费者对黑科技的猎奇心理,可对于追求品质的中高端消费者吸引却不足,这就意味着车型的售价难以提升,成本压力又会直接传导回硬件,车企将不得不采用低成本的硬件,这反过来又会限制软件功能创新的施展空间,最终这类车型的所谓软件很可能走向“华而不实”的恶性循环。
其次,当前的智能座舱也难以定义汽车。在人因工程学领域,将智能座舱所处理的功能称为次级驾驶任务。与之对应的油门刹车方向盘操作,则是主驾驶任务。当前多数车企打造智能座舱的主要动作就是将iPad装上车,并没有考虑到次级驾驶任务对主驾驶任务造成的“认知分散”,这可能会导致预期功能安全风险;或可能因为一项鸡肋设计增加了驾驶员的负荷,从而产生挫败感,最终导致驾驶员弃用功能甚至品牌口碑的降低。关于这一话题,涉及到驾驶员情景意识、反馈、负荷、信任等众多驾驶心理学问题,这里不再赘述,建议感兴趣的读者阅读笔者的另一译著《汽车人因工程学》或两篇科普文章《智能座舱人机交互的发展趋势和实践》、《把所有汽车的中控都改成iPad可行吗?》。
总之,智能座舱如果能定义汽车,也许只有两种可能:第一,自动驾驶成为现实,主驾驶任务交给机器,车辆成为第三生活空间,智能座舱将成为车型差异化的主战场;第二,自动驾驶未实现,但智能座舱的功能充分考虑到次级驾驶任务对主驾驶任务的注意力资源的占用以及预期功能安全等问题,讽刺的是,在这一点上德日系老牌车企反而比言必谈“软件定义汽车”的国内多数车企做的好的多。

路侧及云侧的软件

首先,尽管该域的发展主要集中在算法及信息安全等依靠软件决定的领域,但它必须依附于车端的自动驾驶功能才能发挥最大价值。其次,该域内的硬件尽管要求相对车端低,成熟度也相对高,但仍有诸如车端实时性任务卸载时的延时、车辆高速移动时的信道衰落等通信及系统性问题待解决,这些不仅依靠算法的优化,也依靠路侧设备的硬件性能。从短期来看,至少在自动驾驶未实现大规模落地前,该域也难以定义汽车。