四. 优化与源码
1. 优化
1.1 扩展序列化算法
序列化,反序列化主要用在消息正文的转换上
- 序列化时,需要将 Java 对象变为要传输的数据(可以是 byte[],或 json 等,最终都需要变成 byte[])
- 反序列化时,需要将传入的正文数据还原成 Java 对象,便于处理
目前的代码仅支持 Java 自带的序列化,反序列化机制,核心代码如下
// 反序列化byte[] body = new byte[bodyLength];byteByf.readBytes(body);ObjectInputStream in = new ObjectInputStream(new ByteArrayInputStream(body));Message message = (Message) in.readObject();message.setSequenceId(sequenceId);// 序列化ByteArrayOutputStream out = new ByteArrayOutputStream();new ObjectOutputStream(out).writeObject(message);byte[] bytes = out.toByteArray();
为了支持更多序列化算法,抽象一个 Serializer 接口
public interface Serializer {// 反序列化方法<T> T deserialize(Class<T> clazz, byte[] bytes);// 序列化方法<T> byte[] serialize(T object);}
提供两个实现,我这里直接将实现加入了枚举类 Serializer.Algorithm 中
enum SerializerAlgorithm implements Serializer {// Java 实现Java {@Overridepublic <T> T deserialize(Class<T> clazz, byte[] bytes) {try {ObjectInputStream in =new ObjectInputStream(new ByteArrayInputStream(bytes));Object object = in.readObject();return (T) object;} catch (IOException | ClassNotFoundException e) {throw new RuntimeException("SerializerAlgorithm.Java 反序列化错误", e);}}@Overridepublic <T> byte[] serialize(T object) {try {ByteArrayOutputStream out = new ByteArrayOutputStream();new ObjectOutputStream(out).writeObject(object);return out.toByteArray();} catch (IOException e) {throw new RuntimeException("SerializerAlgorithm.Java 序列化错误", e);}}},// Json 实现(引入了 Gson 依赖)Json {@Overridepublic <T> T deserialize(Class<T> clazz, byte[] bytes) {return new Gson().fromJson(new String(bytes, StandardCharsets.UTF_8), clazz);}@Overridepublic <T> byte[] serialize(T object) {return new Gson().toJson(object).getBytes(StandardCharsets.UTF_8);}};// 需要从协议的字节中得到是哪种序列化算法public static SerializerAlgorithm getByInt(int type) {SerializerAlgorithm[] array = SerializerAlgorithm.values();if (type < 0 || type > array.length - 1) {throw new IllegalArgumentException("超过 SerializerAlgorithm 范围");}return array[type];}}
增加配置类和配置文件
public abstract class Config {static Properties properties;static {try (InputStream in = Config.class.getResourceAsStream("/application.properties")) {properties = new Properties();properties.load(in);} catch (IOException e) {throw new ExceptionInInitializerError(e);}}public static int getServerPort() {String value = properties.getProperty("server.port");if(value == null) {return 8080;} else {return Integer.parseInt(value);}}public static Serializer.Algorithm getSerializerAlgorithm() {String value = properties.getProperty("serializer.algorithm");if(value == null) {return Serializer.Algorithm.Java;} else {return Serializer.Algorithm.valueOf(value);}}}
配置文件
serializer.algorithm=Json
修改编解码器
/*** 必须和 LengthFieldBasedFrameDecoder 一起使用,确保接到的 ByteBuf 消息是完整的*/public class MessageCodecSharable extends MessageToMessageCodec<ByteBuf, Message> {@Overridepublic void encode(ChannelHandlerContext ctx, Message msg, List<Object> outList) throws Exception {ByteBuf out = ctx.alloc().buffer();// 1. 4 字节的魔数out.writeBytes(new byte[]{1, 2, 3, 4});// 2. 1 字节的版本,out.writeByte(1);// 3. 1 字节的序列化方式 jdk 0 , json 1out.writeByte(Config.getSerializerAlgorithm().ordinal());// 4. 1 字节的指令类型out.writeByte(msg.getMessageType());// 5. 4 个字节out.writeInt(msg.getSequenceId());// 无意义,对齐填充out.writeByte(0xff);// 6. 获取内容的字节数组byte[] bytes = Config.getSerializerAlgorithm().serialize(msg);// 7. 长度out.writeInt(bytes.length);// 8. 写入内容out.writeBytes(bytes);outList.add(out);}@Overrideprotected void decode(ChannelHandlerContext ctx, ByteBuf in, List<Object> out) throws Exception {int magicNum = in.readInt();byte version = in.readByte();byte serializerAlgorithm = in.readByte(); // 0 或 1byte messageType = in.readByte(); // 0,1,2...int sequenceId = in.readInt();in.readByte();int length = in.readInt();byte[] bytes = new byte[length];in.readBytes(bytes, 0, length);// 找到反序列化算法Serializer.Algorithm algorithm = Serializer.Algorithm.values()[serializerAlgorithm];// 确定具体消息类型Class<? extends Message> messageClass = Message.getMessageClass(messageType);Message message = algorithm.deserialize(messageClass, bytes);// log.debug("{}, {}, {}, {}, {}, {}", magicNum, version, serializerType, messageType, sequenceId, length);// log.debug("{}", message);out.add(message);}}
其中确定具体消息类型,可以根据 消息类型字节 获取到对应的 消息 class
@Datapublic abstract class Message implements Serializable {/*** 根据消息类型字节,获得对应的消息 class* @param messageType 消息类型字节* @return 消息 class*/public static Class<? extends Message> getMessageClass(int messageType) {return messageClasses.get(messageType);}private int sequenceId;private int messageType;public abstract int getMessageType();public static final int LoginRequestMessage = 0;public static final int LoginResponseMessage = 1;public static final int ChatRequestMessage = 2;public static final int ChatResponseMessage = 3;public static final int GroupCreateRequestMessage = 4;public static final int GroupCreateResponseMessage = 5;public static final int GroupJoinRequestMessage = 6;public static final int GroupJoinResponseMessage = 7;public static final int GroupQuitRequestMessage = 8;public static final int GroupQuitResponseMessage = 9;public static final int GroupChatRequestMessage = 10;public static final int GroupChatResponseMessage = 11;public static final int GroupMembersRequestMessage = 12;public static final int GroupMembersResponseMessage = 13;public static final int PingMessage = 14;public static final int PongMessage = 15;private static final Map<Integer, Class<? extends Message>> messageClasses = new HashMap<>();static {messageClasses.put(LoginRequestMessage, LoginRequestMessage.class);messageClasses.put(LoginResponseMessage, LoginResponseMessage.class);messageClasses.put(ChatRequestMessage, ChatRequestMessage.class);messageClasses.put(ChatResponseMessage, ChatResponseMessage.class);messageClasses.put(GroupCreateRequestMessage, GroupCreateRequestMessage.class);messageClasses.put(GroupCreateResponseMessage, GroupCreateResponseMessage.class);messageClasses.put(GroupJoinRequestMessage, GroupJoinRequestMessage.class);messageClasses.put(GroupJoinResponseMessage, GroupJoinResponseMessage.class);messageClasses.put(GroupQuitRequestMessage, GroupQuitRequestMessage.class);messageClasses.put(GroupQuitResponseMessage, GroupQuitResponseMessage.class);messageClasses.put(GroupChatRequestMessage, GroupChatRequestMessage.class);messageClasses.put(GroupChatResponseMessage, GroupChatResponseMessage.class);messageClasses.put(GroupMembersRequestMessage, GroupMembersRequestMessage.class);messageClasses.put(GroupMembersResponseMessage, GroupMembersResponseMessage.class);}}
1.2 参数调优
1)CONNECT_TIMEOUT_MILLIS
属于 SocketChannal 参数
用在客户端建立连接时,如果在指定毫秒内无法连接,会抛出 timeout 异常
SO_TIMEOUT 主要用在阻塞 IO,阻塞 IO 中 accept,read 等都是无限等待的,如果不希望永远阻塞,使用它调整超时时间
@Slf4jpublic class TestConnectionTimeout {public static void main(String[] args) {NioEventLoopGroup group = new NioEventLoopGroup();try {Bootstrap bootstrap = new Bootstrap().group(group).option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 300).channel(NioSocketChannel.class).handler(new LoggingHandler());ChannelFuture future = bootstrap.connect("127.0.0.1", 8080);future.sync().channel().closeFuture().sync(); // 断点1} catch (Exception e) {e.printStackTrace();log.debug("timeout");} finally {group.shutdownGracefully();}}}
另外源码部分 io.netty.channel.nio.AbstractNioChannel.AbstractNioUnsafe#connect
@Overridepublic final void connect(final SocketAddress remoteAddress, final SocketAddress localAddress, final ChannelPromise promise) {// ...// Schedule connect timeout.int connectTimeoutMillis = config().getConnectTimeoutMillis();if (connectTimeoutMillis > 0) {connectTimeoutFuture = eventLoop().schedule(new Runnable() {@Overridepublic void run() {ChannelPromise connectPromise = AbstractNioChannel.this.connectPromise;ConnectTimeoutException cause =new ConnectTimeoutException("connection timed out: " + remoteAddress); // 断点2if (connectPromise != null && connectPromise.tryFailure(cause)) {close(voidPromise());}}}, connectTimeoutMillis, TimeUnit.MILLISECONDS);}// ...}
2)SO_BACKLOG
- 属于 ServerSocketChannal 参数
- 第一次握手,client 发送 SYN 到 server,状态修改为 SYN_SEND,server 收到,状态改变为 SYN_REVD,并将该请求放入 sync queue 队列
- 第二次握手,server 回复 SYN + ACK 给 client,client 收到,状态改变为 ESTABLISHED,并发送 ACK 给 server
- 第三次握手,server 收到 ACK,状态改变为 ESTABLISHED,将该请求从 sync queue 放入 accept queue
其中
在 linux 2.2 之前,backlog 大小包括了两个队列的大小,在 2.2 之后,分别用下面两个参数来控制
sync queue - 半连接队列
- 大小通过 /proc/sys/net/ipv4/tcp_max_syn_backlog 指定,在
syncookies启用的情况下,逻辑上没有最大值限制,这个设置便被忽略
- 大小通过 /proc/sys/net/ipv4/tcp_max_syn_backlog 指定,在
accept queue - 全连接队列
- 其大小通过 /proc/sys/net/core/somaxconn 指定,在使用 listen 函数时,内核会根据传入的 backlog 参数与系统参数,取二者的较小值
- 如果 accpet queue 队列满了,server 将发送一个拒绝连接的错误信息到 client
netty 中
可以通过 option(ChannelOption.SO_BACKLOG, 值) 来设置大小
可以通过下面源码查看默认大小
public class DefaultServerSocketChannelConfig extends DefaultChannelConfigimplements ServerSocketChannelConfig {private volatile int backlog = NetUtil.SOMAXCONN;// ...}
课堂调试关键断点为:io.netty.channel.nio.NioEventLoop#processSelectedKey
oio 中更容易说明,不用 debug 模式
public class Server {public static void main(String[] args) throws IOException {ServerSocket ss = new ServerSocket(8888, 2);Socket accept = ss.accept();System.out.println(accept);System.in.read();}}
客户端启动 4 个
public class Client {public static void main(String[] args) throws IOException {try {Socket s = new Socket();System.out.println(new Date()+" connecting...");s.connect(new InetSocketAddress("localhost", 8888),1000);System.out.println(new Date()+" connected...");s.getOutputStream().write(1);System.in.read();} catch (IOException e) {System.out.println(new Date()+" connecting timeout...");e.printStackTrace();}}}
第 1,2,3 个客户端都打印,但除了第一个处于 accpet 外,其它两个都处于 accept queue 中
Tue Apr 21 20:30:28 CST 2020 connecting...Tue Apr 21 20:30:28 CST 2020 connected...
第 4 个客户端连接时
Tue Apr 21 20:53:58 CST 2020 connecting...Tue Apr 21 20:53:59 CST 2020 connecting timeout...java.net.SocketTimeoutException: connect timed out
3)ulimit -n
- 属于操作系统参数
4)TCP_NODELAY
- 属于 SocketChannal 参数
5)SO_SNDBUF & SO_RCVBUF
- SO_SNDBUF 属于 SocketChannal 参数
- SO_RCVBUF 既可用于 SocketChannal 参数,也可以用于 ServerSocketChannal 参数(建议设置到 ServerSocketChannal 上)
6)ALLOCATOR
- 属于 SocketChannal 参数
- 用来分配 ByteBuf, ctx.alloc()
7)RCVBUF_ALLOCATOR
- 属于 SocketChannal 参数
- 控制 netty 接收缓冲区大小
- 负责入站数据的分配,决定入站缓冲区的大小(并可动态调整),统一采用 direct 直接内存,具体池化还是非池化由 allocator 决定
1.3 RPC 框架
1)准备工作
这些代码可以认为是现成的,无需从头编写练习
为了简化起见,在原来聊天项目的基础上新增 Rpc 请求和响应消息
@Datapublic abstract class Message implements Serializable {// 省略旧的代码public static final int RPC_MESSAGE_TYPE_REQUEST = 101;public static final int RPC_MESSAGE_TYPE_RESPONSE = 102;static {// ...messageClasses.put(RPC_MESSAGE_TYPE_REQUEST, RpcRequestMessage.class);messageClasses.put(RPC_MESSAGE_TYPE_RESPONSE, RpcResponseMessage.class);}}
请求消息
@Getter@ToString(callSuper = true)public class RpcRequestMessage extends Message {/*** 调用的接口全限定名,服务端根据它找到实现*/private String interfaceName;/*** 调用接口中的方法名*/private String methodName;/*** 方法返回类型*/private Class<?> returnType;/*** 方法参数类型数组*/private Class[] parameterTypes;/*** 方法参数值数组*/private Object[] parameterValue;public RpcRequestMessage(int sequenceId, String interfaceName, String methodName, Class<?> returnType, Class[] parameterTypes, Object[] parameterValue) {super.setSequenceId(sequenceId);this.interfaceName = interfaceName;this.methodName = methodName;this.returnType = returnType;this.parameterTypes = parameterTypes;this.parameterValue = parameterValue;}@Overridepublic int getMessageType() {return RPC_MESSAGE_TYPE_REQUEST;}}
响应消息
@Data@ToString(callSuper = true)public class RpcResponseMessage extends Message {/*** 返回值*/private Object returnValue;/*** 异常值*/private Exception exceptionValue;@Overridepublic int getMessageType() {return RPC_MESSAGE_TYPE_RESPONSE;}}
服务器架子
@Slf4jpublic class RpcServer {public static void main(String[] args) {NioEventLoopGroup boss = new NioEventLoopGroup();NioEventLoopGroup worker = new NioEventLoopGroup();LoggingHandler LOGGING_HANDLER = new LoggingHandler(LogLevel.DEBUG);MessageCodecSharable MESSAGE_CODEC = new MessageCodecSharable();// rpc 请求消息处理器,待实现RpcRequestMessageHandler RPC_HANDLER = new RpcRequestMessageHandler();try {ServerBootstrap serverBootstrap = new ServerBootstrap();serverBootstrap.channel(NioServerSocketChannel.class);serverBootstrap.group(boss, worker);serverBootstrap.childHandler(new ChannelInitializer<SocketChannel>() {@Overrideprotected void initChannel(SocketChannel ch) throws Exception {ch.pipeline().addLast(new ProcotolFrameDecoder());ch.pipeline().addLast(LOGGING_HANDLER);ch.pipeline().addLast(MESSAGE_CODEC);ch.pipeline().addLast(RPC_HANDLER);}});Channel channel = serverBootstrap.bind(8080).sync().channel();channel.closeFuture().sync();} catch (InterruptedException e) {log.error("server error", e);} finally {boss.shutdownGracefully();worker.shutdownGracefully();}}}
客户端架子
public class RpcClient {public static void main(String[] args) {NioEventLoopGroup group = new NioEventLoopGroup();LoggingHandler LOGGING_HANDLER = new LoggingHandler(LogLevel.DEBUG);MessageCodecSharable MESSAGE_CODEC = new MessageCodecSharable();// rpc 响应消息处理器,待实现RpcResponseMessageHandler RPC_HANDLER = new RpcResponseMessageHandler();try {Bootstrap bootstrap = new Bootstrap();bootstrap.channel(NioSocketChannel.class);bootstrap.group(group);bootstrap.handler(new ChannelInitializer<SocketChannel>() {@Overrideprotected void initChannel(SocketChannel ch) throws Exception {ch.pipeline().addLast(new ProcotolFrameDecoder());ch.pipeline().addLast(LOGGING_HANDLER);ch.pipeline().addLast(MESSAGE_CODEC);ch.pipeline().addLast(RPC_HANDLER);}});Channel channel = bootstrap.connect("localhost", 8080).sync().channel();channel.closeFuture().sync();} catch (Exception e) {log.error("client error", e);} finally {group.shutdownGracefully();}}}
服务器端的 service 获取
public class ServicesFactory {static Properties properties;static Map<Class<?>, Object> map = new ConcurrentHashMap<>();static {try (InputStream in = Config.class.getResourceAsStream("/application.properties")) {properties = new Properties();properties.load(in);Set<String> names = properties.stringPropertyNames();for (String name : names) {if (name.endsWith("Service")) {Class<?> interfaceClass = Class.forName(name);Class<?> instanceClass = Class.forName(properties.getProperty(name));map.put(interfaceClass, instanceClass.newInstance());}}} catch (IOException | ClassNotFoundException | InstantiationException | IllegalAccessException e) {throw new ExceptionInInitializerError(e);}}public static <T> T getService(Class<T> interfaceClass) {return (T) map.get(interfaceClass);}}
相关配置 application.properties
serializer.algorithm=Jsoncn.itcast.server.service.HelloService=cn.itcast.server.service.HelloServiceImpl
2)服务器 handler
@Slf4j@ChannelHandler.Sharablepublic class RpcRequestMessageHandler extends SimpleChannelInboundHandler<RpcRequestMessage> {@Overrideprotected void channelRead0(ChannelHandlerContext ctx, RpcRequestMessage message) {RpcResponseMessage response = new RpcResponseMessage();response.setSequenceId(message.getSequenceId());try {// 获取真正的实现对象HelloService service = (HelloService)ServicesFactory.getService(Class.forName(message.getInterfaceName()));// 获取要调用的方法Method method = service.getClass().getMethod(message.getMethodName(), message.getParameterTypes());// 调用方法Object invoke = method.invoke(service, message.getParameterValue());// 调用成功response.setReturnValue(invoke);} catch (Exception e) {e.printStackTrace();// 调用异常response.setExceptionValue(e);}// 返回结果ctx.writeAndFlush(response);}}
3)客户端代码第一版
只发消息
@Slf4jpublic class RpcClient {public static void main(String[] args) {NioEventLoopGroup group = new NioEventLoopGroup();LoggingHandler LOGGING_HANDLER = new LoggingHandler(LogLevel.DEBUG);MessageCodecSharable MESSAGE_CODEC = new MessageCodecSharable();RpcResponseMessageHandler RPC_HANDLER = new RpcResponseMessageHandler();try {Bootstrap bootstrap = new Bootstrap();bootstrap.channel(NioSocketChannel.class);bootstrap.group(group);bootstrap.handler(new ChannelInitializer<SocketChannel>() {@Overrideprotected void initChannel(SocketChannel ch) throws Exception {ch.pipeline().addLast(new ProcotolFrameDecoder());ch.pipeline().addLast(LOGGING_HANDLER);ch.pipeline().addLast(MESSAGE_CODEC);ch.pipeline().addLast(RPC_HANDLER);}});Channel channel = bootstrap.connect("localhost", 8080).sync().channel();ChannelFuture future = channel.writeAndFlush(new RpcRequestMessage(1,"cn.itcast.server.service.HelloService","sayHello",String.class,new Class[]{String.class},new Object[]{"张三"})).addListener(promise -> {if (!promise.isSuccess()) {Throwable cause = promise.cause();log.error("error", cause);}});channel.closeFuture().sync();} catch (Exception e) {log.error("client error", e);} finally {group.shutdownGracefully();}}}
4)客户端 handler 第一版
@Slf4j@ChannelHandler.Sharablepublic class RpcResponseMessageHandler extends SimpleChannelInboundHandler<RpcResponseMessage> {@Overrideprotected void channelRead0(ChannelHandlerContext ctx, RpcResponseMessage msg) throws Exception {log.debug("{}", msg);}}
5)客户端代码 第二版
包括 channel 管理,代理,接收结果
@Slf4jpublic class RpcClientManager {public static void main(String[] args) {HelloService service = getProxyService(HelloService.class);System.out.println(service.sayHello("zhangsan"));// System.out.println(service.sayHello("lisi"));// System.out.println(service.sayHello("wangwu"));}// 创建代理类public static <T> T getProxyService(Class<T> serviceClass) {ClassLoader loader = serviceClass.getClassLoader();Class<?>[] interfaces = new Class[]{serviceClass};// sayHello "张三"Object o = Proxy.newProxyInstance(loader, interfaces, (proxy, method, args) -> {// 1. 将方法调用转换为 消息对象int sequenceId = SequenceIdGenerator.nextId();RpcRequestMessage msg = new RpcRequestMessage(sequenceId,serviceClass.getName(),method.getName(),method.getReturnType(),method.getParameterTypes(),args);// 2. 将消息对象发送出去getChannel().writeAndFlush(msg);// 3. 准备一个空 Promise 对象,来接收结果 指定 promise 对象异步接收结果线程DefaultPromise<Object> promise = new DefaultPromise<>(getChannel().eventLoop());RpcResponseMessageHandler.PROMISES.put(sequenceId, promise);// promise.addListener(future -> {// // 线程// });// 4. 等待 promise 结果promise.await();if(promise.isSuccess()) {// 调用正常return promise.getNow();} else {// 调用失败throw new RuntimeException(promise.cause());}});return (T) o;}private static Channel channel = null;private static final Object LOCK = new Object();// 获取唯一的 channel 对象public static Channel getChannel() {if (channel != null) {return channel;}synchronized (LOCK) { // t2if (channel != null) { // t1return channel;}initChannel();return channel;}}// 初始化 channel 方法private static void initChannel() {NioEventLoopGroup group = new NioEventLoopGroup();LoggingHandler LOGGING_HANDLER = new LoggingHandler(LogLevel.DEBUG);MessageCodecSharable MESSAGE_CODEC = new MessageCodecSharable();RpcResponseMessageHandler RPC_HANDLER = new RpcResponseMessageHandler();Bootstrap bootstrap = new Bootstrap();bootstrap.channel(NioSocketChannel.class);bootstrap.group(group);bootstrap.handler(new ChannelInitializer<SocketChannel>() {@Overrideprotected void initChannel(SocketChannel ch) throws Exception {ch.pipeline().addLast(new ProcotolFrameDecoder());ch.pipeline().addLast(LOGGING_HANDLER);ch.pipeline().addLast(MESSAGE_CODEC);ch.pipeline().addLast(RPC_HANDLER);}});try {channel = bootstrap.connect("localhost", 8080).sync().channel();channel.closeFuture().addListener(future -> {group.shutdownGracefully();});} catch (Exception e) {log.error("client error", e);}}}
6)客户端 handler 第二版
@Slf4j@ChannelHandler.Sharablepublic class RpcResponseMessageHandler extends SimpleChannelInboundHandler<RpcResponseMessage> {// 序号 用来接收结果的 promise 对象public static final Map<Integer, Promise<Object>> PROMISES = new ConcurrentHashMap<>();@Overrideprotected void channelRead0(ChannelHandlerContext ctx, RpcResponseMessage msg) throws Exception {log.debug("{}", msg);// 拿到空的 promisePromise<Object> promise = PROMISES.remove(msg.getSequenceId());if (promise != null) {Object returnValue = msg.getReturnValue();Exception exceptionValue = msg.getExceptionValue();if(exceptionValue != null) {promise.setFailure(exceptionValue);} else {promise.setSuccess(returnValue);}}}}
2. 源码分析
2.1 启动剖析
我们就来看看 netty 中对下面的代码是怎样进行处理的
//1 netty 中使用 NioEventLoopGroup (简称 nio boss 线程)来封装线程和 selectorSelector selector = Selector.open();//2 创建 NioServerSocketChannel,同时会初始化它关联的 handler,以及为原生 ssc 存储 configNioServerSocketChannel attachment = new NioServerSocketChannel();//3 创建 NioServerSocketChannel 时,创建了 java 原生的 ServerSocketChannelServerSocketChannel serverSocketChannel = ServerSocketChannel.open();serverSocketChannel.configureBlocking(false);//4 启动 nio boss 线程执行接下来的操作//5 注册(仅关联 selector 和 NioServerSocketChannel),未关注事件SelectionKey selectionKey = serverSocketChannel.register(selector, 0, attachment);//6 head -> 初始化器 -> ServerBootstrapAcceptor -> tail,初始化器是一次性的,只为添加 acceptor//7 绑定端口serverSocketChannel.bind(new InetSocketAddress(8080));//8 触发 channel active 事件,在 head 中关注 op_accept 事件selectionKey.interestOps(SelectionKey.OP_ACCEPT);
入口 io.netty.bootstrap.ServerBootstrap#bind
关键代码 io.netty.bootstrap.AbstractBootstrap#doBind
private ChannelFuture doBind(final SocketAddress localAddress) {// 1. 执行初始化和注册 regFuture 会由 initAndRegister 设置其是否完成,从而回调 3.2 处代码final ChannelFuture regFuture = initAndRegister();final Channel channel = regFuture.channel();if (regFuture.cause() != null) {return regFuture;}// 2. 因为是 initAndRegister 异步执行,需要分两种情况来看,调试时也需要通过 suspend 断点类型加以区分// 2.1 如果已经完成if (regFuture.isDone()) {ChannelPromise promise = channel.newPromise();// 3.1 立刻调用 doBind0doBind0(regFuture, channel, localAddress, promise);return promise;}// 2.2 还没有完成else {final PendingRegistrationPromise promise = new PendingRegistrationPromise(channel);// 3.2 回调 doBind0regFuture.addListener(new ChannelFutureListener() {@Overridepublic void operationComplete(ChannelFuture future) throws Exception {Throwable cause = future.cause();if (cause != null) {// 处理异常...promise.setFailure(cause);} else {promise.registered();// 3. 由注册线程去执行 doBind0doBind0(regFuture, channel, localAddress, promise);}}});return promise;}}
关键代码 io.netty.bootstrap.AbstractBootstrap#initAndRegister
final ChannelFuture initAndRegister() {Channel channel = null;try {channel = channelFactory.newChannel();// 1.1 初始化 - 做的事就是添加一个初始化器 ChannelInitializerinit(channel);} catch (Throwable t) {// 处理异常...return new DefaultChannelPromise(new FailedChannel(), GlobalEventExecutor.INSTANCE).setFailure(t);}// 1.2 注册 - 做的事就是将原生 channel 注册到 selector 上ChannelFuture regFuture = config().group().register(channel);if (regFuture.cause() != null) {// 处理异常...}return regFuture;}
关键代码 io.netty.bootstrap.ServerBootstrap#init
// 这里 channel 实际上是 NioServerSocketChannelvoid init(Channel channel) throws Exception {final Map<ChannelOption<?>, Object> options = options0();synchronized (options) {setChannelOptions(channel, options, logger);}final Map<AttributeKey<?>, Object> attrs = attrs0();synchronized (attrs) {for (Entry<AttributeKey<?>, Object> e: attrs.entrySet()) {@SuppressWarnings("unchecked")AttributeKey<Object> key = (AttributeKey<Object>) e.getKey();channel.attr(key).set(e.getValue());}}ChannelPipeline p = channel.pipeline();final EventLoopGroup currentChildGroup = childGroup;final ChannelHandler currentChildHandler = childHandler;final Entry<ChannelOption<?>, Object>[] currentChildOptions;final Entry<AttributeKey<?>, Object>[] currentChildAttrs;synchronized (childOptions) {currentChildOptions = childOptions.entrySet().toArray(newOptionArray(0));}synchronized (childAttrs) {currentChildAttrs = childAttrs.entrySet().toArray(newAttrArray(0));}// 为 NioServerSocketChannel 添加初始化器p.addLast(new ChannelInitializer<Channel>() {@Overridepublic void initChannel(final Channel ch) throws Exception {final ChannelPipeline pipeline = ch.pipeline();ChannelHandler handler = config.handler();if (handler != null) {pipeline.addLast(handler);}// 初始化器的职责是将 ServerBootstrapAcceptor 加入至 NioServerSocketChannelch.eventLoop().execute(new Runnable() {@Overridepublic void run() {pipeline.addLast(new ServerBootstrapAcceptor(ch, currentChildGroup, currentChildHandler, currentChildOptions, currentChildAttrs));}});}});}
关键代码 io.netty.channel.AbstractChannel.AbstractUnsafe#register
public final void register(EventLoop eventLoop, final ChannelPromise promise) {// 一些检查,略...AbstractChannel.this.eventLoop = eventLoop;if (eventLoop.inEventLoop()) {register0(promise);} else {try {// 首次执行 execute 方法时,会启动 nio 线程,之后注册等操作在 nio 线程上执行// 因为只有一个 NioServerSocketChannel 因此,也只会有一个 boss nio 线程// 这行代码完成的事实是 main -> nio boss 线程的切换eventLoop.execute(new Runnable() {@Overridepublic void run() {register0(promise);}});} catch (Throwable t) {// 日志记录...closeForcibly();closeFuture.setClosed();safeSetFailure(promise, t);}}}
io.netty.channel.AbstractChannel.AbstractUnsafe#register0
private void register0(ChannelPromise promise) {try {if (!promise.setUncancellable() || !ensureOpen(promise)) {return;}boolean firstRegistration = neverRegistered;// 1.2.1 原生的 nio channel 绑定到 selector 上,注意此时没有注册 selector 关注事件,附件为 NioServerSocketChanneldoRegister();neverRegistered = false;registered = true;// 1.2.2 执行 NioServerSocketChannel 初始化器的 initChannelpipeline.invokeHandlerAddedIfNeeded();// 回调 3.2 io.netty.bootstrap.AbstractBootstrap#doBind0safeSetSuccess(promise);pipeline.fireChannelRegistered();// 对应 server socket channel 还未绑定,isActive 为 falseif (isActive()) {if (firstRegistration) {pipeline.fireChannelActive();} else if (config().isAutoRead()) {beginRead();}}} catch (Throwable t) {// Close the channel directly to avoid FD leak.closeForcibly();closeFuture.setClosed();safeSetFailure(promise, t);}}
关键代码 io.netty.channel.ChannelInitializer#initChannel
private boolean initChannel(ChannelHandlerContext ctx) throws Exception {if (initMap.add(ctx)) { // Guard against re-entrance.try {// 1.2.2.1 执行初始化initChannel((C) ctx.channel());} catch (Throwable cause) {exceptionCaught(ctx, cause);} finally {// 1.2.2.2 移除初始化器ChannelPipeline pipeline = ctx.pipeline();if (pipeline.context(this) != null) {pipeline.remove(this);}}return true;}return false;}
关键代码 io.netty.bootstrap.AbstractBootstrap#doBind0
// 3.1 或 3.2 执行 doBind0private static void doBind0(final ChannelFuture regFuture, final Channel channel,final SocketAddress localAddress, final ChannelPromise promise) {channel.eventLoop().execute(new Runnable() {@Overridepublic void run() {if (regFuture.isSuccess()) {channel.bind(localAddress, promise).addListener(ChannelFutureListener.CLOSE_ON_FAILURE);} else {promise.setFailure(regFuture.cause());}}});}
关键代码 io.netty.channel.AbstractChannel.AbstractUnsafe#bind
public final void bind(final SocketAddress localAddress, final ChannelPromise promise) {assertEventLoop();if (!promise.setUncancellable() || !ensureOpen(promise)) {return;}if (Boolean.TRUE.equals(config().getOption(ChannelOption.SO_BROADCAST)) &&localAddress instanceof InetSocketAddress &&!((InetSocketAddress) localAddress).getAddress().isAnyLocalAddress() &&!PlatformDependent.isWindows() && !PlatformDependent.maybeSuperUser()) {// 记录日志...}boolean wasActive = isActive();try {// 3.3 执行端口绑定doBind(localAddress);} catch (Throwable t) {safeSetFailure(promise, t);closeIfClosed();return;}if (!wasActive && isActive()) {invokeLater(new Runnable() {@Overridepublic void run() {// 3.4 触发 active 事件pipeline.fireChannelActive();}});}safeSetSuccess(promise);}
3.3 关键代码 io.netty.channel.socket.nio.NioServerSocketChannel#doBind
protected void doBind(SocketAddress localAddress) throws Exception {if (PlatformDependent.javaVersion() >= 7) {javaChannel().bind(localAddress, config.getBacklog());} else {javaChannel().socket().bind(localAddress, config.getBacklog());}}
3.4 关键代码 io.netty.channel.DefaultChannelPipeline.HeadContext#channelActive
public void channelActive(ChannelHandlerContext ctx) {ctx.fireChannelActive();// 触发 read (NioServerSocketChannel 上的 read 不是读取数据,只是为了触发 channel 的事件注册)readIfIsAutoRead();}
关键代码 io.netty.channel.nio.AbstractNioChannel#doBeginRead
protected void doBeginRead() throws Exception {// Channel.read() or ChannelHandlerContext.read() was calledfinal SelectionKey selectionKey = this.selectionKey;if (!selectionKey.isValid()) {return;}readPending = true;final int interestOps = selectionKey.interestOps();// readInterestOp 取值是 16,在 NioServerSocketChannel 创建时初始化好,代表关注 accept 事件if ((interestOps & readInterestOp) == 0) {selectionKey.interestOps(interestOps | readInterestOp);}}
2.2 NioEventLoop 剖析
NioEventLoop 线程不仅要处理 IO 事件,还要处理 Task(包括普通任务和定时任务),
提交任务代码 io.netty.util.concurrent.SingleThreadEventExecutor#execute
public void execute(Runnable task) {if (task == null) {throw new NullPointerException("task");}boolean inEventLoop = inEventLoop();// 添加任务,其中队列使用了 jctools 提供的 mpsc 无锁队列addTask(task);if (!inEventLoop) {// inEventLoop 如果为 false 表示由其它线程来调用 execute,即首次调用,这时需要向 eventLoop 提交首个任务,启动死循环,会执行到下面的 doStartThreadstartThread();if (isShutdown()) {// 如果已经 shutdown,做拒绝逻辑,代码略...}}if (!addTaskWakesUp && wakesUpForTask(task)) {// 如果线程由于 IO select 阻塞了,添加的任务的线程需要负责唤醒 NioEventLoop 线程wakeup(inEventLoop);}}
唤醒 select 阻塞线程io.netty.channel.nio.NioEventLoop#wakeup
@Overrideprotected void wakeup(boolean inEventLoop) {if (!inEventLoop && wakenUp.compareAndSet(false, true)) {selector.wakeup();}}
启动 EventLoop 主循环 io.netty.util.concurrent.SingleThreadEventExecutor#doStartThread
private void doStartThread() {assert thread == null;executor.execute(new Runnable() {@Overridepublic void run() {// 将线程池的当前线程保存在成员变量中,以便后续使用thread = Thread.currentThread();if (interrupted) {thread.interrupt();}boolean success = false;updateLastExecutionTime();try {// 调用外部类 SingleThreadEventExecutor 的 run 方法,进入死循环,run 方法见下SingleThreadEventExecutor.this.run();success = true;} catch (Throwable t) {logger.warn("Unexpected exception from an event executor: ", t);} finally {// 清理工作,代码略...}}});}
io.netty.channel.nio.NioEventLoop#run 主要任务是执行死循环,不断看有没有新任务,有没有 IO 事件
protected void run() {for (;;) {try {try {// calculateStrategy 的逻辑如下:// 有任务,会执行一次 selectNow,清除上一次的 wakeup 结果,无论有没有 IO 事件,都会跳过 switch// 没有任务,会匹配 SelectStrategy.SELECT,看是否应当阻塞switch (selectStrategy.calculateStrategy(selectNowSupplier, hasTasks())) {case SelectStrategy.CONTINUE:continue;case SelectStrategy.BUSY_WAIT:case SelectStrategy.SELECT:// 因为 IO 线程和提交任务线程都有可能执行 wakeup,而 wakeup 属于比较昂贵的操作,因此使用了一个原子布尔对象 wakenUp,它取值为 true 时,表示该由当前线程唤醒// 进行 select 阻塞,并设置唤醒状态为 falseboolean oldWakenUp = wakenUp.getAndSet(false);// 如果在这个位置,非 EventLoop 线程抢先将 wakenUp 置为 true,并 wakeup// 下面的 select 方法不会阻塞// 等 runAllTasks 处理完成后,到再循环进来这个阶段新增的任务会不会及时执行呢?// 因为 oldWakenUp 为 true,因此下面的 select 方法就会阻塞,直到超时// 才能执行,让 select 方法无谓阻塞select(oldWakenUp);if (wakenUp.get()) {selector.wakeup();}default:}} catch (IOException e) {rebuildSelector0();handleLoopException(e);continue;}cancelledKeys = 0;needsToSelectAgain = false;// ioRatio 默认是 50final int ioRatio = this.ioRatio;if (ioRatio == 100) {try {processSelectedKeys();} finally {// ioRatio 为 100 时,总是运行完所有非 IO 任务runAllTasks();}} else {final long ioStartTime = System.nanoTime();try {processSelectedKeys();} finally {// 记录 io 事件处理耗时final long ioTime = System.nanoTime() - ioStartTime;// 运行非 IO 任务,一旦超时会退出 runAllTasksrunAllTasks(ioTime * (100 - ioRatio) / ioRatio);}}} catch (Throwable t) {handleLoopException(t);}try {if (isShuttingDown()) {closeAll();if (confirmShutdown()) {return;}}} catch (Throwable t) {handleLoopException(t);}}}
⚠️ 注意
这里有个费解的地方就是 wakeup,它既可以由提交任务的线程来调用(比较好理解),也可以由 EventLoop 线程来调用(比较费解),这里要知道 wakeup 方法的效果:
- 由非 EventLoop 线程调用,会唤醒当前在执行 select 阻塞的 EventLoop 线程
- 由 EventLoop 自己调用,会本次的 wakeup 会取消下一次的 select 操作
参考下图

io.netty.channel.nio.NioEventLoop#select
private void select(boolean oldWakenUp) throws IOException {Selector selector = this.selector;try {int selectCnt = 0;long currentTimeNanos = System.nanoTime();// 计算等待时间// * 没有 scheduledTask,超时时间为 1s// * 有 scheduledTask,超时时间为 `下一个定时任务执行时间 - 当前时间`long selectDeadLineNanos = currentTimeNanos + delayNanos(currentTimeNanos);for (;;) {long timeoutMillis = (selectDeadLineNanos - currentTimeNanos + 500000L) / 1000000L;// 如果超时,退出循环if (timeoutMillis <= 0) {if (selectCnt == 0) {selector.selectNow();selectCnt = 1;}break;}// 如果期间又有 task 退出循环,如果没这个判断,那么任务就会等到下次 select 超时时才能被执行// wakenUp.compareAndSet(false, true) 是让非 NioEventLoop 不必再执行 wakeupif (hasTasks() && wakenUp.compareAndSet(false, true)) {selector.selectNow();selectCnt = 1;break;}// select 有限时阻塞// 注意 nio 有 bug,当 bug 出现时,select 方法即使没有时间发生,也不会阻塞住,导致不断空轮询,cpu 占用 100%int selectedKeys = selector.select(timeoutMillis);// 计数加 1selectCnt ++;// 醒来后,如果有 IO 事件、或是由非 EventLoop 线程唤醒,或者有任务,退出循环if (selectedKeys != 0 || oldWakenUp || wakenUp.get() || hasTasks() || hasScheduledTasks()) {break;}if (Thread.interrupted()) {// 线程被打断,退出循环// 记录日志selectCnt = 1;break;}long time = System.nanoTime();if (time - TimeUnit.MILLISECONDS.toNanos(timeoutMillis) >= currentTimeNanos) {// 如果超时,计数重置为 1,下次循环就会 breakselectCnt = 1;}// 计数超过阈值,由 io.netty.selectorAutoRebuildThreshold 指定,默认 512// 这是为了解决 nio 空轮询 bugelse if (SELECTOR_AUTO_REBUILD_THRESHOLD > 0 &&selectCnt >= SELECTOR_AUTO_REBUILD_THRESHOLD) {// 重建 selectorselector = selectRebuildSelector(selectCnt);selectCnt = 1;break;}currentTimeNanos = time;}if (selectCnt > MIN_PREMATURE_SELECTOR_RETURNS) {// 记录日志}} catch (CancelledKeyException e) {// 记录日志}}
处理 keys io.netty.channel.nio.NioEventLoop#processSelectedKeys
private void processSelectedKeys() {if (selectedKeys != null) {// 通过反射将 Selector 实现类中的就绪事件集合替换为 SelectedSelectionKeySet// SelectedSelectionKeySet 底层为数组实现,可以提高遍历性能(原本为 HashSet)processSelectedKeysOptimized();} else {processSelectedKeysPlain(selector.selectedKeys());}}
io.netty.channel.nio.NioEventLoop#processSelectedKey
private void processSelectedKey(SelectionKey k, AbstractNioChannel ch) {final AbstractNioChannel.NioUnsafe unsafe = ch.unsafe();// 当 key 取消或关闭时会导致这个 key 无效if (!k.isValid()) {// 无效时处理...return;}try {int readyOps = k.readyOps();// 连接事件if ((readyOps & SelectionKey.OP_CONNECT) != 0) {int ops = k.interestOps();ops &= ~SelectionKey.OP_CONNECT;k.interestOps(ops);unsafe.finishConnect();}// 可写事件if ((readyOps & SelectionKey.OP_WRITE) != 0) {ch.unsafe().forceFlush();}// 可读或可接入事件if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {// 如果是可接入 io.netty.channel.nio.AbstractNioMessageChannel.NioMessageUnsafe#read// 如果是可读 io.netty.channel.nio.AbstractNioByteChannel.NioByteUnsafe#readunsafe.read();}} catch (CancelledKeyException ignored) {unsafe.close(unsafe.voidPromise());}}
2.3 accept 剖析
nio 中如下代码,在 netty 中的流程
//1 阻塞直到事件发生selector.select();Iterator<SelectionKey> iter = selector.selectedKeys().iterator();while (iter.hasNext()) {//2 拿到一个事件SelectionKey key = iter.next();//3 如果是 accept 事件if (key.isAcceptable()) {//4 执行 acceptSocketChannel channel = serverSocketChannel.accept();channel.configureBlocking(false);//5 关注 read 事件channel.register(selector, SelectionKey.OP_READ);}// ...}
先来看可接入事件处理(accept)
io.netty.channel.nio.AbstractNioMessageChannel.NioMessageUnsafe#read
public void read() {assert eventLoop().inEventLoop();final ChannelConfig config = config();final ChannelPipeline pipeline = pipeline();final RecvByteBufAllocator.Handle allocHandle = unsafe().recvBufAllocHandle();allocHandle.reset(config);boolean closed = false;Throwable exception = null;try {try {do {// doReadMessages 中执行了 accept 并创建 NioSocketChannel 作为消息放入 readBuf// readBuf 是一个 ArrayList 用来缓存消息int localRead = doReadMessages(readBuf);if (localRead == 0) {break;}if (localRead < 0) {closed = true;break;}// localRead 为 1,就一条消息,即接收一个客户端连接allocHandle.incMessagesRead(localRead);} while (allocHandle.continueReading());} catch (Throwable t) {exception = t;}int size = readBuf.size();for (int i = 0; i < size; i ++) {readPending = false;// 触发 read 事件,让 pipeline 上的 handler 处理,这时是处理// io.netty.bootstrap.ServerBootstrap.ServerBootstrapAcceptor#channelReadpipeline.fireChannelRead(readBuf.get(i));}readBuf.clear();allocHandle.readComplete();pipeline.fireChannelReadComplete();if (exception != null) {closed = closeOnReadError(exception);pipeline.fireExceptionCaught(exception);}if (closed) {inputShutdown = true;if (isOpen()) {close(voidPromise());}}} finally {if (!readPending && !config.isAutoRead()) {removeReadOp();}}}
关键代码 io.netty.bootstrap.ServerBootstrap.ServerBootstrapAcceptor#channelRead
public void channelRead(ChannelHandlerContext ctx, Object msg) {// 这时的 msg 是 NioSocketChannelfinal Channel child = (Channel) msg;// NioSocketChannel 添加 childHandler 即初始化器child.pipeline().addLast(childHandler);// 设置选项setChannelOptions(child, childOptions, logger);for (Entry<AttributeKey<?>, Object> e: childAttrs) {child.attr((AttributeKey<Object>) e.getKey()).set(e.getValue());}try {// 注册 NioSocketChannel 到 nio worker 线程,接下来的处理也移交至 nio worker 线程childGroup.register(child).addListener(new ChannelFutureListener() {@Overridepublic void operationComplete(ChannelFuture future) throws Exception {if (!future.isSuccess()) {forceClose(child, future.cause());}}});} catch (Throwable t) {forceClose(child, t);}}
又回到了熟悉的 io.netty.channel.AbstractChannel.AbstractUnsafe#register 方法
public final void register(EventLoop eventLoop, final ChannelPromise promise) {// 一些检查,略...AbstractChannel.this.eventLoop = eventLoop;if (eventLoop.inEventLoop()) {register0(promise);} else {try {// 这行代码完成的事实是 nio boss -> nio worker 线程的切换eventLoop.execute(new Runnable() {@Overridepublic void run() {register0(promise);}});} catch (Throwable t) {// 日志记录...closeForcibly();closeFuture.setClosed();safeSetFailure(promise, t);}}}
io.netty.channel.AbstractChannel.AbstractUnsafe#register0
private void register0(ChannelPromise promise) {try {if (!promise.setUncancellable() || !ensureOpen(promise)) {return;}boolean firstRegistration = neverRegistered;doRegister();neverRegistered = false;registered = true;// 执行初始化器,执行前 pipeline 中只有 head -> 初始化器 -> tailpipeline.invokeHandlerAddedIfNeeded();// 执行后就是 head -> logging handler -> my handler -> tailsafeSetSuccess(promise);pipeline.fireChannelRegistered();if (isActive()) {if (firstRegistration) {// 触发 pipeline 上 active 事件pipeline.fireChannelActive();} else if (config().isAutoRead()) {beginRead();}}} catch (Throwable t) {closeForcibly();closeFuture.setClosed();safeSetFailure(promise, t);}}
回到了熟悉的代码 io.netty.channel.DefaultChannelPipeline.HeadContext#channelActive
public void channelActive(ChannelHandlerContext ctx) {ctx.fireChannelActive();// 触发 read (NioSocketChannel 这里 read,只是为了触发 channel 的事件注册,还未涉及数据读取)readIfIsAutoRead();}
io.netty.channel.nio.AbstractNioChannel#doBeginRead
protected void doBeginRead() throws Exception {// Channel.read() or ChannelHandlerContext.read() was calledfinal SelectionKey selectionKey = this.selectionKey;if (!selectionKey.isValid()) {return;}readPending = true;// 这时候 interestOps 是 0final int interestOps = selectionKey.interestOps();if ((interestOps & readInterestOp) == 0) {// 关注 read 事件selectionKey.interestOps(interestOps | readInterestOp);}}
2.4 read 剖析
再来看可读事件 io.netty.channel.nio.AbstractNioByteChannel.NioByteUnsafe#read,注意发送的数据未必能够一次读完,因此会触发多次 nio read 事件,一次事件内会触发多次 pipeline read,一次事件会触发一次 pipeline read complete
public final void read() {final ChannelConfig config = config();if (shouldBreakReadReady(config)) {clearReadPending();return;}final ChannelPipeline pipeline = pipeline();// io.netty.allocator.type 决定 allocator 的实现final ByteBufAllocator allocator = config.getAllocator();// 用来分配 byteBuf,确定单次读取大小final RecvByteBufAllocator.Handle allocHandle = recvBufAllocHandle();allocHandle.reset(config);ByteBuf byteBuf = null;boolean close = false;try {do {byteBuf = allocHandle.allocate(allocator);// 读取allocHandle.lastBytesRead(doReadBytes(byteBuf));if (allocHandle.lastBytesRead() <= 0) {byteBuf.release();byteBuf = null;close = allocHandle.lastBytesRead() < 0;if (close) {readPending = false;}break;}allocHandle.incMessagesRead(1);readPending = false;// 触发 read 事件,让 pipeline 上的 handler 处理,这时是处理 NioSocketChannel 上的 handlerpipeline.fireChannelRead(byteBuf);byteBuf = null;}// 是否要继续循环while (allocHandle.continueReading());allocHandle.readComplete();// 触发 read complete 事件pipeline.fireChannelReadComplete();if (close) {closeOnRead(pipeline);}} catch (Throwable t) {handleReadException(pipeline, byteBuf, t, close, allocHandle);} finally {if (!readPending && !config.isAutoRead()) {removeReadOp();}}}
io.netty.channel.DefaultMaxMessagesRecvByteBufAllocator.MaxMessageHandle#continueReading(io.netty.util.UncheckedBooleanSupplier)
public boolean continueReading(UncheckedBooleanSupplier maybeMoreDataSupplier) {return// 一般为 trueconfig.isAutoRead() &&// respectMaybeMoreData 默认为 true// maybeMoreDataSupplier 的逻辑是如果预期读取字节与实际读取字节相等,返回 true(!respectMaybeMoreData || maybeMoreDataSupplier.get()) &&// 小于最大次数,maxMessagePerRead 默认 16totalMessages < maxMessagePerRead &&// 实际读到了数据totalBytesRead > 0;}
