6.1和跟 Redis 相比,SimpleKV 还缺少什么?

image.png

6.2Redis 基本 IO 模型中还有哪些潜在的性能瓶颈?

在 Redis 基本 IO 模型中,主要是主线程在执行操作,任何耗时的操作,例如 bigkey、全量返回等操作,都是潜在的性能瓶颈。

6.3AOF 重写过程中有没有其他潜在的阻塞风险?

(1)Redis主线程fork创建bgrewriteaof子进程时,内核需要创建用于管理子进程的相关数据结构,这些数据结构在操作系统中通常叫作进程控制块(PCB)。内核要把主线程的PCB内容拷贝给子进程。这个创建和拷贝过程由内核执行,是会阻塞主线程的。而且,在拷贝过程中,子进程要拷贝父进程的页表,这个过程的耗时与Redis实例的内存大小有关。如果Redis实例内存大,页表就会大,fork执行时间就会长,这就会给主线程带来阻塞风险。
(2)bgrewriteaof子进程会和主线程共享内存。当主线程收到新写或修改的操作时,主线程会申请新的内存空间,用来保存新写或修改的数据,如果操作的是bigkey,那么,主线程会因为申请大空间而面临阻塞风险。这是因为操作系统在分配内存空间时,在查找和锁的开销,这就会导致阻塞。

6.4AOF 重写为什么不共享使用 AOF 本身的日志?

如果都用 AOF 日志的话,主线程要写,bgrewriteaof 子进程也要写,这两者会竞争文件系统的锁,这就会对 Redis 主线程的性能造成影响。

6.5使用一个 2 核 CPU、4GB 内存、500GB 磁盘的云主机运行 Redis,Redis 数据库的数据量大小差不多是 2GB。当时 Redis 主要以修改操作为主,写读比例差不多在 8:2 左右,也就是说,如果有 100 个请求,80 个请求执行的是修改操作。在这个场景下,用 RDB 做持久化有什么风险吗?

(1)内存不足的风险:Redis fork 一个 bgsave 子进程进行 RDB 写入,如果主线程再接收到写操作,就会采用写时复制。写时复制需要给写操作的数据分配新的内存空间。本问题中写的比例为 80%,那么,在持久化过程中,为了保存 80% 写操作涉及的数据,写时复制机制会在实例内存中,为这些数据再分配新内存空间,分配的内存量相当于整个实例数据量的 80%,大约是 1.6GB,这样一来,整个系统内存的使用量就接近饱和了。此时,如果实例还有大量的新 key 写入或 key 修改,云主机内存很快就会被吃光。如果云主机开启了 Swap 机制,就会有一部分数据被换到磁盘上,当访问磁盘上的这部分数据时,性能会急剧下降。如果云主机没有开启 Swap,会直接触发 OOM,整个 Redis 实例会面临被系统 kill 掉的风险。
(2)主线程和子进程竞争使用 CPU 的风险:生成 RDB 的子进程需要 CPU 核运行,主线程本身也需要 CPU 核运行,而且,如果 Redis 还启用了后台线程,此时,主线程、子进程和后台线程都会竞争 CPU 资源。由于云主机只有 2 核 CPU,这就会影响到主线程处理请求的速度。

6.6为什么主从库之间的复制不使用AOF

(1)RDB 文件是二进制文件,无论是要把 RDB 写入磁盘,还是要通过网络传输 RDB,IO 效率都比记录和传输 AOF 的高。
(2)在从库端进行恢复时,用 RDB 的恢复效率要高于用 AOF。

6.7在主从切换过程中,客户端能否正常地进行请求操作呢?

主从集群一般是采用读写分离模式,当主库故障后,客户端仍然可以把读请求发送给从库,让从库服务。但是,对于写请求操作,客户端就无法执行了。

6.8 五个哨兵实例的集群,quorum 值设为 2。在运行过程中,如果有 3 个哨兵实例都发生故障了,此时,Redis 主库如果有故障,还能正确地判断主库“客观下线”吗?如果可以的话,还能进行主从库自动切换吗?

因为判定主库“客观下线”的依据是,认为主库“主观下线”的哨兵个数要大于等于 quorum 值,现在还剩 2 个哨兵实例,个数正好等于 quorum 值,所以还能正常判断主库是否处于“客观下线”状态。如果一个哨兵想要执行主从切换,就要获到半数以上的哨兵投票赞成,也就是至少需要 3 个哨兵投票赞成。但是,现在只有 2 个哨兵了,所以就无法进行主从切换了。

6.9哨兵实例是不是越多越好呢?如果同时调大 down-after-milliseconds 值,对减少误判是不是也有好处?

哨兵实例越多,误判率会越低,但是在判定主库下线和选举 Leader 时,实例需要拿到的赞成票数也越多,等待所有哨兵投完票的时间可能也会相应增加,主从库切换的时间也会变长,客户端容易堆积较多的请求操作,可能会导致客户端请求溢出,从而造成请求丢失。如果业务层对 Redis 的操作有响应时间要求,就可能会因为新主库一直没有选定,新操作无法执行而发生超时报警。调大 down-after-milliseconds 后,可能会导致这样的情况:主库实际已经发生故障了,但是哨兵过了很长时间才判断出来,这就会影响到 Redis 对业务的可用性。

6.10rehash 的触发时机和渐进式执行机制

Redis 会使用装载因子(load factor)来判断是否需要做 rehash。装载因子的计算方式是,哈希表中所有 entry 的个数除以哈希表的哈希桶个数。Redis 会根据装载因子的两种情况,来触发 rehash 操作:装载因子≥1,同时,哈希表被允许进行 rehash;装载因子≥5。
在第一种情况下,如果装载因子等于 1,同时我们假设,所有键值对是平均分布在哈希表的各个桶中的,那么,此时,哈希表可以不用链式哈希,因为一个哈希桶正好保存了一个键值对。但是,如果此时再有新的数据写入,哈希表就要使用链式哈希了,这会对查询性能产生影响。
在进行 RDB 生成和 AOF 重写时,哈希表的 rehash 是被禁止的,这是为了避免对 RDB 和 AOF 重写造成影响。如果此时,Redis 没有在生成 RDB 和重写 AOF,那么,就可以进行 rehash。否则的话,再有数据写入时,哈希表就要开始使用查询较慢的链式哈希了。在第二种情况下,也就是装载因子大于等于 5 时,就表明当前保存的数据量已经远远大于哈希桶的个数,哈希桶里会有大量的链式哈希存在,性能会受到严重影响,此时,就立马开始做 rehash。刚刚说的是触发 rehash 的情况,如果装载因子小于 1,或者装载因子大于 1 但是小于 5,同时哈希表暂时不被允许进行 rehash(例如,实例正在生成 RDB 或者重写 AOF),此时,哈希表是不会进行 rehash 操作的。

6.11采用渐进式 hash 时,如果实例暂时没有收到新请求,是不是就不做 rehash 了?

其实不是的。Redis 会执行定时任务,定时任务中就包含了 rehash 操作。所谓的定时任务,就是按照一定频率(例如每 100ms/ 次)执行的任务。在 rehash 被触发后,即使没有收到新请求,Redis 也会定时执行一次 rehash 操作,而且,每次执行时长不会超过 1s,以免对其他任务造成影响。

6.12主线程、子进程和后台线程的联系与区别

从操作系统的角度来看,进程一般是指资源分配单元,例如一个进程拥有自己的堆、栈、虚存空间(页表)、文件描述符等;而线程一般是指 CPU 进行调度和执行的实体。如果一个进程启动后,没有再创建额外的线程,那么,这样的进程一般称为主进程或主线程。Redis 启动以后,本身就是一个进程,它会接收客户端发送的请求,并处理读写操作请求。
image.png

6.13写时复制的底层实现机制

对 Redis 来说,主线程 fork 出 bgsave 子进程后,bgsave 子进程实际是复制了主线程的页表。这些页表中,就保存了在执行 bgsave 命令时,主线程的所有数据块在内存中的物理地址。这样一来,bgsave 子进程生成 RDB 时,就可以根据页表读取这些数据,再写入磁盘中。如果此时,主线程接收到了新写或修改操作,那么,主线程会使用写时复制机制。具体来说,写时复制就是指,主线程在有写操作时,才会把这个新写或修改后的数据写入到一个新的物理地址中,并修改自己的页表映射。
bgsave 子进程复制主线程的页表以后,假如主线程需要修改虚页 7 里的数据,那么,主线程就需要新分配一个物理页(假设是物理页 53),然后把修改后的虚页 7 里的数据写到物理页 53 上,而虚页 7 里原来的数据仍然保存在物理页 33 上。这个时候,虚页 7 到物理页 33 的映射关系,仍然保留在 bgsave 子进程中。所以,bgsave 子进程可以无误地把虚页 7 的原始数据写入 RDB 文件。
image.png

6.14replication buffer 和 repl_backlog_buffer 的区别

在进行主从复制时,Redis 会使用 replication buffer 和 repl_backlog_buffer。
replication buffer 是主从库在进行全量复制时,主库上用于和从库连接的客户端的 buffer,而 repl_backlog_buffer 是为了支持从库增量复制,主库上用于持续保存写操作的一块专用 buffer。
Redis 主从库在进行复制时,当主库要把全量复制期间的写操作命令发给从库时,主库会先创建一个客户端,用来连接从库,然后通过这个客户端,把写操作命令发给从库。在内存中,主库上的客户端就会对应一个 buffer,这个 buffer 就被称为 replication buffer。Redis 通过 client_buffer 配置项来控制这个 buffer 的大小。主库会给每个从库建立一个客户端,所以 replication buffer 不是共享的,而是每个从库都有一个对应的客户端。repl_backlog_buffer 是一块专用 buffer,在 Redis 服务器启动后,开始一直接收写操作命令,这是所有从库共享的。主库和从库会各自记录自己的复制进度,所以,不同的从库在进行恢复时,会把自己的复制进度(slave_repl_offset)发给主库,主库就可以和它独立同步。
image.png