缘起
最近阅读<<我的第一本算法书>>(【日】石田保辉;宫崎修一)
本系列笔记拟采用golang练习之
快速排序(Quick Sort)
快速排序算法首先会在序列中随机选择一个基准值(pivot),然后将除了基准值以外的数,分为“比基准值小的数”和“比基准值大的数”这两个类别,再将其排列成以下形式:[ 比基准值小的数 ] 基准值 [ 比基准值大的数 ]接着,对两个“[]”中的数据进行排序之后,整体的排序便完成了。对“[]”里面的数据进行排序时同样也会使用快速排序。快速排序是一种“分治法”。它将原本的问题分成两个子问题(比基准值小的数和比基准值大的数),然后再分别解决这两个问题(递归地)。平均运行时间为O(nlogn)摘自 <<我的第一本算法书>> 【日】石田保辉;宫崎修一
流程(非递归, 原地快速排序)
- 给定待排序数组data[N]
- 定义待排序栈stack, 其中元素是一个(left, right)整型坐标, 表示待排序子序列的范围
- 初始时, 将(0, N-1)压入stack, 表示需要将整个序列进行排序
- 当stack不为空时, 循环执行:
- 待排序子序列出栈: left, right = stack.pop()
- 取基准值v = data[left], 然后data[left]置为nil, 腾出一个格子备用
- 取左指针l = left, 右指针r = right, 当前指针标识(左/右)rside = true
- 如果rside == true, 将右指针r向左移动, 直到: data[r] < v, 或r=l
- 如果找到data[r] < v, 则把data[r]置入data[l]指向的空位, data[r]设nil, 腾出一个格子
- 如果rside == false, 将左指针l向右移动, 直到: data[l] > v, 或l=r
- 如果找到data[l] > v, 则把data[l]置入data[r]指向的空位, data[l]设nil, 腾出一个格子
- 如果l == r, 左右序列切分完成, 将基准值v置入data[l], 返回
- 循环执行步骤4-8
- stack为空, 排序完成
为什么要非递归
- 极端情况下(比如特别大的数组, 刚好已经是倒序排列, 而每次取基准值是取left位置), 递归算法可能导致栈嵌套过深, 一个是占用大量内存, 二个是可能导致栈溢出错误.
快速排序需要左右子序列的中间结果, 再进行合并, 因此无法通过尾递归优化消除栈嵌套
目标
实现并验证快速排序
- 使用辅助的子序列坐标栈, 实现非递归执行
- 原地排序, 不占用额外空间
设计
- ISorter: 定义排序器接口. 定义值比较函数以兼容任意数值类型, 通过调整比较函数实现倒序排序
- tQStack: 实现一个堆栈, 辅助快速排序时, 记录待排序的子序列坐标
- tQuickSort: 非递归的原地快速排序器, 实现ISorter接口, 使用辅助栈消除递归
单元测试
quick_sort_test.go, 测试过程与堆排序, 归并排序类似, 样本规模为10万元素
package sortingimport ("fmt""learning/gooop/sorting""learning/gooop/sorting/quick_sort""math/rand""testing""time")func Test_QuickSort(t *testing.T) {fnAssertTrue := func(b bool, msg string) {if !b {t.Fatal(msg)}}reversed := falsefnCompare := func(a interface{}, b interface{}) sorting.CompareResult {i1 := a.(int)i2 := b.(int)if i1 < i2 {if reversed {return sorting.GREATER} else {return sorting.LESS}} else if i1 == i2 {return sorting.EQUAL} else {if reversed {return sorting.LESS} else {return sorting.GREATER}}}fnTestSorter := func(sorter sorting.ISorter) {reversed = false// test simple arraysamples := []interface{} { 2,3,1,5,4,7,6 }samples = sorter.Sort(samples, fnCompare)fnAssertTrue(fmt.Sprintf("%v", samples) == "[1 2 3 4 5 6 7]", "expecting 1,2,3,4,5,6,7")t.Log("pass sorting [2 3 1 5 4 7 6] >> [1 2 3 4 5 6 7]")// test 10000 items sortingrnd := rand.New(rand.NewSource(time.Now().UnixNano()))for plus := 0;plus < 5;plus++ {sampleCount := 100 * 1000 + plust.Logf("prepare large array with %v items", sampleCount)samples = make([]interface{}, sampleCount)for i := 0; i < sampleCount; i++ {samples[i] = rnd.Intn(sampleCount * 10)}t.Logf("sorting large array with %v items", sampleCount)t0 := time.Now().UnixNano()samples = sorter.Sort(samples, fnCompare)cost := time.Now().UnixNano() - t0for i := 1; i < sampleCount; i++ {fnAssertTrue(fnCompare(samples[i-1], samples[i]) != sorting.GREATER, "expecting <=")}t.Logf("end sorting large array, cost = %v ms", cost/1000000)}// test 0-20sampleCount := 20t.Log("sorting 0-20")samples = make([]interface{}, sampleCount)for i := 0;i < sampleCount;i++ {for {p := rnd.Intn(sampleCount)if samples[p] == nil {samples[p] = ibreak}}}t.Logf("unsort = %v", samples)samples = sorter.Sort(samples, fnCompare)t.Logf("sorted = %v", samples)fnAssertTrue(fmt.Sprintf("%v", samples) == "[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]", "expecting 0-20")t.Log("pass sorting 0-20")// test specialsamples = []interface{} {}samples = sorter.Sort(samples, fnCompare)t.Log("pass sorting []")samples = []interface{} { 1 }samples = sorter.Sort(samples, fnCompare)t.Log("pass sorting [1]")samples = []interface{} { 3,1 }samples = sorter.Sort(samples, fnCompare)fnAssertTrue(fmt.Sprintf("%v", samples) == "[1 3]", "expecting 1,3")t.Log("pass sorting [1 3]")reversed = truesamples = []interface{} { 2, 3,1 }samples = sorter.Sort(samples, fnCompare)fnAssertTrue(fmt.Sprintf("%v", samples) == "[3 2 1]", "expecting 3,2,1")t.Log("pass sorting [3 2 1]")}t.Log("\ntesting QuickSorter")fnTestSorter(quick_sort.QuickSorter)}
测试输出
- 快速排序真的很快, 与堆排序,归并排序是一个数量级, 10万随机元素排序耗时仅数十毫秒
- 对随机数据的排序比归并排序还稍快一些, 这可能是因为原地排序不需要预分配缓冲区
$ go test -v quick_sort_test.go=== RUN Test_QuickSortquick_sort_test.go:111:testing QuickSorterquick_sort_test.go:48: pass sorting [2 3 1 5 4 7 6] >> [1 2 3 4 5 6 7]quick_sort_test.go:54: prepare large array with 100000 itemsquick_sort_test.go:60: sorting large array with 100000 itemsquick_sort_test.go:67: end sorting large array, cost = 27 msquick_sort_test.go:54: prepare large array with 100001 itemsquick_sort_test.go:60: sorting large array with 100001 itemsquick_sort_test.go:67: end sorting large array, cost = 28 msquick_sort_test.go:54: prepare large array with 100002 itemsquick_sort_test.go:60: sorting large array with 100002 itemsquick_sort_test.go:67: end sorting large array, cost = 33 msquick_sort_test.go:54: prepare large array with 100003 itemsquick_sort_test.go:60: sorting large array with 100003 itemsquick_sort_test.go:67: end sorting large array, cost = 32 msquick_sort_test.go:54: prepare large array with 100004 itemsquick_sort_test.go:60: sorting large array with 100004 itemsquick_sort_test.go:67: end sorting large array, cost = 27 msquick_sort_test.go:72: sorting 0-20quick_sort_test.go:83: unsort = [11 3 4 2 9 19 18 7 12 6 13 5 10 0 15 14 17 1 8 16]quick_sort_test.go:86: sorted = [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]quick_sort_test.go:88: pass sorting 0-20quick_sort_test.go:93: pass sorting []quick_sort_test.go:97: pass sorting [1]quick_sort_test.go:102: pass sorting [1 3]quick_sort_test.go:108: pass sorting [3 2 1]--- PASS: Test_QuickSort (0.18s)PASSok command-line-arguments 0.184s
ISorter.go
定义排序器接口. 定义值比较函数以兼容任意数值类型, 通过调整比较函数实现倒序排序
package sortingtype ISorter interface {Sort(data []interface{}, comparator CompareFunction) []interface{}}type CompareFunction func(a interface{}, b interface{}) CompareResulttype CompareResult intconst LESS CompareResult = -1const EQUAL CompareResult = 0const GREATER CompareResult = 1
tQStack.go
实现一个堆栈, 辅助快速排序时, 记录待排序的子序列坐标
package quick_sorttype tQStack struct {stack []tIntPaircapacity intsize int}type tIntPair [2]intvar gEmptyPair = [2]int{ -1, -1 }func newQStack() *tQStack {return &tQStack{stack: make([]tIntPair, 0),capacity: 0,size: 0,}}func (me *tQStack) push(left,right int) {node := tIntPair([2]int{left,right})if me.size < me.capacity {me.stack[me.size] = node} else {me.stack = append(me.stack, node)me.capacity++}me.size++}func (me *tQStack) pop() (left, right int) {me.size--it := me.stack[me.size]me.stack[me.size] = gEmptyPairreturn it[0], it[1]}func (me *tQStack) isEmpty() bool {return me.size <= 0}func (me *tQStack) isNotEmpty() bool {return me.size > 0}
tQuickSort.go
非递归的原地快速排序器, 实现ISorter接口, 使用辅助栈消除递归
package quick_sortimport ("learning/gooop/sorting")type tQuickSort struct {}func newQuickSort() sorting.ISorter {return &tQuickSort{}}func (me *tQuickSort) Sort(data []interface{}, comparator sorting.CompareFunction) []interface{} {if data == nil {return nil}size := len(data)if size <= 1 {return data}if size == 2 {if comparator(data[0], data[1]) == sorting.GREATER {data[0],data[1] = data[1], data[0]return data}}stack := newQStack()stack.push(0, size - 1)me.qsort(data, comparator, stack)return data}func (me *tQuickSort) qsort(data []interface{}, comparator sorting.CompareFunction, stack *tQStack) {for ;stack.isNotEmpty(); {left, right := stack.pop()lfrom, lto, rfrom, rto := me.split(data, comparator, left, right)if lfrom < lto {stack.push(lfrom, lto)}if rfrom < rto {stack.push(rfrom, rto)}}}func (me *tQuickSort) split(data []interface{}, comparator sorting.CompareFunction, left int, right int) (lfrom, lto, rfrom, rto int) {if left >= right {return}v := data[left]l := leftr := rightrside := truefor {hit := falseif rside {for ; r > l; r-- {if comparator(data[r], v) == sorting.LESS {hit = truebreak}}if hit {data[l], data[r] = data[r], nill++rside = false}} else {for ; l < r;l++ {if comparator(data[l], v) == sorting.GREATER {hit = truebreak}}if hit {data[r], data[l] = data[l], nilr--rside = true}}if l == r {data[l] = vbreak}}return left, l - 1, r + 1, right}var QuickSorter = newQuickSort()
(end)
