缘起
最近复习设计模式
拜读谭勇德的<<设计模式就该这样学>>
本系列笔记拟采用golang练习之
观察者模式
观察者模式(Observer Pattern)又叫作发布-订阅(Publish/Subscribe)模式、模型-视图(Model/View)模式、源-监听器(Source/Listener)模式,或从属者(Dependent)模式。定义一种一对多的依赖关系,一个主题对象可被多个观察者对象同时监听,使得每当主题对象状态变化时,所有依赖它的对象都会得到通知并被自动更新,属于行为型设计模式。(摘自 谭勇德 <<设计模式就该这样学>>)
场景
- 某智能app, 需添加自定义闹铃的功能
- 闹铃可设定时间, 以及是否每日重复
- 可设定多个闹铃
- 根据观察者模式, 每个闹铃对象, 都是时间服务的观察者, 监听时间变化的事件.
设计
- ITimeService: 定义时间服务的接口, 接受观察者的注册和注销
- ITimeObserver: 定义时间观察者接口, 接收时间变化事件的通知
- tMockTimeService: 虚拟的时间服务, 自定义时间倍率以方便时钟相关的测试
- AlarmClock: 闹铃的实现类, 实现ITimeObserver接口以订阅时间变化通知
单元测试
observer_pattern_test.go, 定义了一个临时会议的一次性闹铃, 以及一系列日常作息的重复闹铃.
package behavioral_patternsimport ("learning/gooop/behavioral_patterns/observer""testing""time")func Test_ObserverPattern(t *testing.T) {_ = observer.NewAlarmClock("下午开会", 14,30, false)_ = observer.NewAlarmClock("起床", 6,0, true)_ = observer.NewAlarmClock("午饭", 12,30, true)_ = observer.NewAlarmClock("午休", 13,0, true)_ = observer.NewAlarmClock("晚饭", 18,30, true)clock := observer.NewAlarmClock("晚安", 22,0, true)for {if clock.Occurs() >= 2 {break}time.Sleep(time.Second)}}
测试输出
$ go test -v observer_pattern_test.go=== RUN Test_ObserverPattern下午开会.next = 2021-02-11 14:30:00起床.next = 2021-02-12 06:00:00午饭.next = 2021-02-11 12:30:00午休.next = 2021-02-11 13:00:00晚饭.next = 2021-02-11 18:30:00晚安.next = 2021-02-11 22:00:002021-02-11 11:51:05 时间=2021-02-11 12:30:04 闹铃 午饭2021-02-11 11:51:06 时间=2021-02-11 13:00:04 闹铃 午休2021-02-11 11:51:09 时间=2021-02-11 14:30:04 闹铃 下午开会2021-02-11 11:51:17 时间=2021-02-11 18:30:04 闹铃 晚饭2021-02-11 11:51:24 时间=2021-02-11 22:00:04 闹铃 晚安2021-02-11 11:51:40 时间=2021-02-12 06:00:04 闹铃 起床2021-02-11 11:51:53 时间=2021-02-12 12:30:04 闹铃 午饭2021-02-11 11:51:54 时间=2021-02-12 13:00:04 闹铃 午休2021-02-11 11:52:05 时间=2021-02-12 18:30:04 闹铃 晚饭2021-02-11 11:52:12 时间=2021-02-12 22:00:04 闹铃 晚安--- PASS: Test_ObserverPattern (69.01s)PASSok command-line-arguments 69.012s
ITimeService.go
定义时间服务的接口, 接受观察者的注册和注销
package observertype ITimeService interface {Attach(observer ITimeObserver)Detach(id string)}
ITimeObserver.go
定义时间观察者接口, 接收时间变化事件的通知
package observerimport "time"type ITimeObserver interface {ID() stringTimeElapsed(now *time.Time)}
tMockTimeService.go
虚拟的时间服务, 自定义时间倍率以方便时钟相关的测试
package observerimport ("sync""sync/atomic""time")type tMockTimeService struct {observers map[string]ITimeObserverrwmutex *sync.RWMutexspeed int64state int64}func NewMockTimeService(speed int64) ITimeService {it := &tMockTimeService{observers: make(map[string]ITimeObserver, 0),rwmutex: new(sync.RWMutex),speed: speed,state: 0,}it.Start()return it}func (me *tMockTimeService) Start() {if !atomic.CompareAndSwapInt64(&(me.state), 0, 1) {return}go func() {timeFrom := time.Now()timeOffset := timeFrom.UnixNano()for range time.Tick(time.Duration(100)*time.Millisecond) {if me.state == 0 {break}nanos := (time.Now().UnixNano() - timeOffset) * me.speedt := timeFrom.Add(time.Duration(nanos) * time.Nanosecond)me.NotifyAll(&t)}}()}func (me *tMockTimeService) NotifyAll(now *time.Time) {me.rwmutex.RLock()defer me.rwmutex.RUnlock()for _,it := range me.observers {go it.TimeElapsed(now)}}func (me *tMockTimeService) Attach(it ITimeObserver) {me.rwmutex.Lock()defer me.rwmutex.Unlock()me.observers[it.ID()] = it}func (me *tMockTimeService) Detach(id string) {me.rwmutex.Lock()defer me.rwmutex.Unlock()delete(me.observers, id)}var GlobalTimeService = NewMockTimeService(1800)
AlarmClock.go
闹铃的实现类, 实现ITimeObserver接口以订阅时间变化通知
package observerimport ("fmt""sync/atomic""time")type AlarmClock struct {id stringname stringhour time.Durationminute time.Durationrepeatable boolnext *time.Timeoccurs int}var gClockID int64 = 0func newClockID() string {id := atomic.AddInt64(&gClockID, 1)return fmt.Sprintf("AlarmClock-%d", id)}func NewAlarmClock(name string, hour int, minute int, repeatable bool) *AlarmClock {it := &AlarmClock{id: newClockID(),name: name,hour: time.Duration(hour),minute: time.Duration(minute),repeatable: repeatable,next: nil,occurs: 0,}it.next = it.NextAlarmTime()GlobalTimeService.Attach(it)return it}func (me *AlarmClock) NextAlarmTime() *time.Time {now := time.Now()today, _ := time.ParseInLocation("2006-01-02 15:04:05", fmt.Sprintf("%s 00:00:00", now.Format("2006-01-02")), time.Local)t := today.Add(me.hour *time.Hour).Add(me.minute * time.Minute)if t.Unix() < now.Unix() {t = t.Add(24*time.Hour)}fmt.Printf("%s.next = %s\n", me.name, t.Format("2006-01-02 15:04:05"))return &t}func (me *AlarmClock) ID() string {return me.name}func (me *AlarmClock) TimeElapsed(now *time.Time) {it := me.nextif it == nil {return}if now.Unix() >= it.Unix() {me.occurs++fmt.Printf("%s 时间=%s 闹铃 %s\n", time.Now().Format("2006-01-02 15:04:05"), now.Format("2006-01-02 15:04:05"), me.name)if me.repeatable {t := me.next.Add(24*time.Hour)me.next = &t} else {GlobalTimeService.Detach(me.ID())}}}func (me *AlarmClock) Occurs() int {return me.occurs}
观察者模式小结
观察者模式的优点(1)观察者和被观察者是松耦合(抽象耦合)的,符合依赖倒置原则。(2)分离了表示层(观察者)和数据逻辑层(被观察者),并且建立了一套触发机制,使得数据的变化可以响应到多个表示层上。(3)实现了一对多的通信机制,支持事件注册机制,支持兴趣分发机制,当被观察者触发事件时,只有感兴趣的观察者可以接收到通知。观察者模式的缺点(1)如果观察者数量过多,则事件通知会耗时较长。(2)事件通知呈线性关系,如果其中一个观察者处理事件卡壳,则会影响后续的观察者接收该事件。(3)如果观察者和被观察者之间存在循环依赖,则可能造成两者之间的循环调用,导致系统崩溃。(摘自 谭勇德 <<设计模式就该这样学>>)
(end)
