缘起
最近阅读<<我的第一本算法书>>(【日】石田保辉;宫崎修一)
本系列笔记拟采用golang练习之
网页排名(PageRank/佩奇排名), 随机游走
网页排名(PageRank,也叫作佩奇排名)是一种在搜索网页时对搜索结果进行排序的算法。网页排名就是利用网页之间的链接结构计算出网页价值的算法。在网页排名中,链入页面越多的网页,它的重要性也就越高。假设没有链入页面的网页权重为1。有链入页面的网页权重是其链入页面的权重之和。如果一个网页链向多个页面,那么其链向的所有页面将平分它的权重。在网页排名中,链入的页面越多,该网页所发出的链接的价值就越高。可以使用“随机游走模型”(random walk model)来解决网页互链的问题.用户浏览网页的操作就可以这样来定义:用户等概率跳转到当前网页所链向的一个网页的概率为1-α;等概率远程跳转到其他网页中的一个网页的概率为α。模拟用户随机访问页面的过程,每访问一个页面, 其权重加1,直到访问的总次数达到N次为止,每个页面的权重值代表的是“某一刻正在浏览这个网页的概率”,可直接将其作为网页的权重来使用。摘自 <<我的第一本算法书>> 【日】石田保辉;宫崎修一
目标
- 实现基于随机游走模型的PageRank算法, 并验证其有效性和稳定性(网页权重在模拟若干次后, 保持稳定)
设计
- IPage: 网页模型接口
- IPageRanking: 网页排名算法接口
- tPage: 网页模型的实现
- tRandomWalkPageRanking: 基于随机游走模型的PageRank算法, 实现IPageRanking接口
单元测试
- page_rank_test.go, 验证网页排名算法的有效性和稳定性
- 首先通过简单case验证其有效性
- 然后随机生成大批量随机互链的网页, 验证在多轮随机游走后, 网页权重的稳定性 ```go package others
import ( “fmt” pr “learning/gooop/others/page_rank” “math/rand” “sort” “testing” “time” )
func Test_PageRank(t *testing.T) { fnAssertTrue := func(b bool, msg string) { if !b { t.Fatal(msg) } }
t.Log("testing simple case")p11 := pr.NewPage("p11")p12 := pr.NewPage("p12")p13 := pr.NewPage("p13")p21 := pr.NewPage("p21")p22 := pr.NewPage("p22")p31 := pr.NewPage("p31")p32 := pr.NewPage("p32")p11.AddLink(p21)p11.AddLink(p22)p12.AddLink(p21)p12.AddLink(p22)p13.AddLink(p21)p13.AddLink(p22)p21.AddLink(p31)p22.AddLink(p31)p31.AddLink(p32)p32.AddLink(p31)samples := []pr.IPage{p11,p12,p13, p21, p22, p31, p32,}pr.RandomWalkPageRanking.RankAll(samples, 1000)sort.Sort(sort.Reverse(pr.IPageSlice(samples)))for _,p := range samples {t.Log(p)}fnAssertTrue(samples[0].ID() == "p31", "expecting top.1 = p31")fnAssertTrue(samples[1].ID() == "p32", "expecting top.2 = p32")fnAssertTrue(samples[2].ID() == "p21" || samples[2].ID() == "p22", "expecting top.3 in (p21,p22)")fnAssertTrue(samples[3].ID() == "p21" || samples[3].ID() == "p22", "expecting top.4 in (p21,p22)")// generate 1000 random pagesiPageCount := 1000pages := make([]pr.IPage, iPageCount)for i,_ := range pages {pages[i] = pr.NewPage(fmt.Sprintf("p%02d.com", i))}r := rand.New(rand.NewSource(time.Now().UnixNano()))for i,p := range pages {// add random page linksfor j,iPageLinks := 0, r.Intn(10);j < iPageLinks; {n := r.Intn(iPageCount)if n != i {j++p.AddLink(pages[n])}}}// rank pages and get top 100mapTop100 := make(map[string]bool, 0)fnTestRanking := func(rounds int) {t.Logf("testing page rank with %v rounds", rounds)bFirstRound := len(mapTop100) == 0// page rankingpr.RandomWalkPageRanking.RankAll(pages, rounds)// sort pages by rankingsort.Sort(sort.Reverse(pr.IPageSlice(pages)))hits := 0for i,p := range pages {if i < 10 {t.Log(p)}if i < 100 {if bFirstRound {mapTop100[p.ID()] = true} else if _,ok := mapTop100[p.ID()];ok {hits++}} else {break}}if !bFirstRound {t.Logf("hit rate: %s%v", "%", hits)}}// test stability under different roundsfnTestRanking(3000)fnTestRanking(10000)fnTestRanking(30000)fnTestRanking(90000)
}
<a name="0LRlR"></a># 测试输出- 测试表明, 当随机游走的总次数 >= 网页数量 * 每个网页的平均发出链接数时, 所得排名是比较稳定的
$ go test -v page_rank_test.go === RUN Test_PageRank page_rank_test.go:19: testing simple case page_rank_test.go:47: p(p31, 0.4206, [p32]) page_rank_test.go:47: p(p32, 0.3673, [p31]) page_rank_test.go:47: p(p21, 0.0639, [p31]) page_rank_test.go:47: p(p22, 0.0604, [p31]) page_rank_test.go:47: p(p11, 0.0300, [p21 p22]) page_rank_test.go:47: p(p12, 0.0291, [p21 p22]) page_rank_test.go:47: p(p13, 0.0287, [p21 p22]) page_rank_test.go:77: testing page rank with 3000 rounds page_rank_test.go:89: p(p604.com, 0.0039, []) page_rank_test.go:89: p(p807.com, 0.0035, [p709.com p328.com p303.com p110.com p858.com p394.com p231.com p731.com p83.com]) page_rank_test.go:89: p(p72.com, 0.0034, [p249.com p347.com p604.com p533.com p416.com p958.com p966.com p385.com]) page_rank_test.go:89: p(p712.com, 0.0033, [p485.com p451.com p236.com p141.com p168.com p693.com]) page_rank_test.go:89: p(p452.com, 0.0032, [p588.com p344.com p618.com p258.com p394.com p285.com p780.com p606.com p89.com]) page_rank_test.go:89: p(p709.com, 0.0031, [p666.com p554.com p103.com p202.com p230.com]) page_rank_test.go:89: p(p975.com, 0.0029, []) page_rank_test.go:89: p(p840.com, 0.0029, [p974.com p698.com p49.com p851.com p73.com]) page_rank_test.go:89: p(p867.com, 0.0028, [p588.com p196.com p931.com p381.com p621.com p848.com]) page_rank_test.go:89: p(p633.com, 0.0028, [p840.com]) page_rank_test.go:77: testing page rank with 10000 rounds page_rank_test.go:89: p(p604.com, 0.0039, []) page_rank_test.go:89: p(p807.com, 0.0034, [p709.com p328.com p303.com p110.com p858.com p394.com p231.com p731.com p83.com]) page_rank_test.go:89: p(p72.com, 0.0034, [p249.com p347.com p604.com p533.com p416.com p958.com p966.com p385.com]) page_rank_test.go:89: p(p452.com, 0.0033, [p588.com p344.com p618.com p258.com p394.com p285.com p780.com p606.com p89.com]) page_rank_test.go:89: p(p712.com, 0.0033, [p485.com p451.com p236.com p141.com p168.com p693.com]) page_rank_test.go:89: p(p709.com, 0.0031, [p666.com p554.com p103.com p202.com p230.com]) page_rank_test.go:89: p(p975.com, 0.0029, []) page_rank_test.go:89: p(p840.com, 0.0029, [p974.com p698.com p49.com p851.com p73.com]) page_rank_test.go:89: p(p612.com, 0.0028, [p116.com p562.com p179.com p37.com p761.com]) page_rank_test.go:89: p(p319.com, 0.0028, [p726.com p63.com p558.com p301.com p185.com p944.com]) page_rank_test.go:104: hit rate: %98 page_rank_test.go:77: testing page rank with 30000 rounds page_rank_test.go:89: p(p604.com, 0.0039, []) page_rank_test.go:89: p(p807.com, 0.0034, [p709.com p328.com p303.com p110.com p858.com p394.com p231.com p731.com p83.com]) page_rank_test.go:89: p(p72.com, 0.0034, [p249.com p347.com p604.com p533.com p416.com p958.com p966.com p385.com]) page_rank_test.go:89: p(p452.com, 0.0033, [p588.com p344.com p618.com p258.com p394.com p285.com p780.com p606.com p89.com]) page_rank_test.go:89: p(p712.com, 0.0032, [p485.com p451.com p236.com p141.com p168.com p693.com]) page_rank_test.go:89: p(p709.com, 0.0031, [p666.com p554.com p103.com p202.com p230.com]) page_rank_test.go:89: p(p975.com, 0.0029, []) page_rank_test.go:89: p(p840.com, 0.0029, [p974.com p698.com p49.com p851.com p73.com]) page_rank_test.go:89: p(p319.com, 0.0028, [p726.com p63.com p558.com p301.com p185.com p944.com]) page_rank_test.go:89: p(p612.com, 0.0028, [p116.com p562.com p179.com p37.com p761.com]) page_rank_test.go:104: hit rate: %98 page_rank_test.go:77: testing page rank with 90000 rounds page_rank_test.go:89: p(p604.com, 0.0039, []) page_rank_test.go:89: p(p807.com, 0.0034, [p709.com p328.com p303.com p110.com p858.com p394.com p231.com p731.com p83.com]) page_rank_test.go:89: p(p72.com, 0.0034, [p249.com p347.com p604.com p533.com p416.com p958.com p966.com p385.com]) page_rank_test.go:89: p(p452.com, 0.0033, [p588.com p344.com p618.com p258.com p394.com p285.com p780.com p606.com p89.com]) page_rank_test.go:89: p(p712.com, 0.0032, [p485.com p451.com p236.com p141.com p168.com p693.com]) page_rank_test.go:89: p(p709.com, 0.0031, [p666.com p554.com p103.com p202.com p230.com]) page_rank_test.go:89: p(p975.com, 0.0029, []) page_rank_test.go:89: p(p840.com, 0.0029, [p974.com p698.com p49.com p851.com p73.com]) page_rank_test.go:89: p(p612.com, 0.0028, [p116.com p562.com p179.com p37.com p761.com]) page_rank_test.go:89: p(p319.com, 0.0028, [p726.com p63.com p558.com p301.com p185.com p944.com]) page_rank_test.go:104: hit rate: %98 —- PASS: Test_PageRank (13.93s) PASS ok command-line-arguments 13.936s
<a name="nsiQ7"></a># IPage.go网页模型接口```gopackage page_rankimport "fmt"type IPage interface {fmt.StringerID() stringGetWeight() float64SetWeight(float64)GetLinks() []IPageAddLink(IPage)}type IPageSlice []IPagefunc (me IPageSlice) Len() int {return len(me)}func (me IPageSlice) Less(i,j int) bool {return me[i].GetWeight() < me[j].GetWeight()}func (me IPageSlice) Swap(i,j int) {me[i], me[j] = me[j], me[i]}
IPageRanking.go
网页排名算法接口
package page_ranktype IPageRanking interface {RankAll(pages []IPage, rounds int)}
tPage.go
网页模型的实现
package page_rankimport ("fmt""strings")type tPage struct {id stringweight float64links []IPage}func NewPage(id string) IPage {return &tPage{id: id,weight: 0,links: []IPage{},}}func (me *tPage) ID() string {return me.id}func (me *tPage) GetWeight() float64 {return me.weight}func (me *tPage) SetWeight(w float64) {me.weight = w}func (me *tPage) GetLinks() []IPage {return me.links}func (me *tPage) AddLink(p IPage) {me.links = append(me.links, p)}func (me *tPage) String() string {linkStrings := make([]string, len(me.links))for i,p := range me.links {linkStrings[i] = p.ID()}return fmt.Sprintf("p(%v, %8.4f, [%v])", me.id, me.weight, strings.Join(linkStrings, " "))}
tRandomWalkPageRanking.go
基于随机游走模型的PageRank算法, 实现IPageRanking接口
package page_rankimport ("math/rand""time")type tRandomWalkPageRanking struct {}var gPossiblityToLinkedPage = 85func newRandomWalkPageRanking() IPageRanking {return &tRandomWalkPageRanking{}}func (me *tRandomWalkPageRanking) RankAll(pages []IPage, rounds int) {iPageCount := len(pages)if iPageCount <= 0 {return}r := rand.New(rand.NewSource(time.Now().UnixNano()))current := pages[0]iVisitCount := iPageCount * roundsfor i := 0;i < iVisitCount;i++ {// visit current pagecurrent.SetWeight(current.GetWeight() + 1)possibility := r.Intn(100)if possibility < gPossiblityToLinkedPage && len(current.GetLinks())>0 {// goto linked pagecurrent = me.VisitLinkedPage(current, r)} else {// goto unlinked pagecurrent = me.VisitUnlinkedPage(current, pages, r)}}fVisitCount := float64(iVisitCount)for _,p := range pages {p.SetWeight(p.GetWeight() / fVisitCount)}}func (me *tRandomWalkPageRanking) VisitLinkedPage(current IPage, r *rand.Rand) IPage {links := current.GetLinks()next := links[r.Intn(len(links))]return next}func (me *tRandomWalkPageRanking) VisitUnlinkedPage(current IPage, pages []IPage, r *rand.Rand) IPage {mapLinks := make(map[string]bool, 0)mapLinks[current.ID()] = truefor _,p := range current.GetLinks() {mapLinks[p.ID()] = true}n := len(pages)for {next := pages[r.Intn(n)]if _,ok := mapLinks[next.ID()];!ok {return next}}}var RandomWalkPageRanking = newRandomWalkPageRanking()
(end)
