缘起

最近阅读<<我的第一本算法书>>(【日】石田保辉;宫崎修一)
本系列笔记拟采用golang练习之

狄克斯特拉算法

  1. 与贝尔曼-福特算法类似,
  2. 狄克斯特拉(Dijkstra)算法也是求解最短路径问题的算法,
  3. 使用它可以求得从起点到终点的路径中权重总和最小的那条路径。
  4. 比起需要对所有的边都重复计算权重和更新权重的贝尔曼-福特算法,
  5. 狄克斯特拉算法多了一步选择顶点的操作,
  6. 这使得它在求最短路径上更为高效。
  7. 如果闭环中有负数权重,就不存在最短路径。
  8. 贝尔曼-福特算法可以直接认定不存在最短路径,
  9. 但在狄克斯特拉算法中,即便不存在最短路径,
  10. 它也会算出一个错误的最短路径出来。
  11. 因此,有负数权重时不能使用狄克斯特拉算法。
  12. 摘自 <<我的第一本算法书>> 【日】石田保辉;宫崎修一
  • 狄克斯特拉算法与贝尔曼-福特算法非常相似, 主要区别在于总是优先选择权重最小的候选节点.
  • 因此, 贝尔曼-福特算法使用队列或堆栈存储候选节点, 而狄克斯特拉算法使用堆.

    流程

  1. 给定若干顶点, 以及顶点间的若干条边, 寻找从指定起点srcNode到指定终点dstNode的最小权重路径
  2. 设定srcNode的权重为0, 其他顶点的权重为无穷大
  3. 将srcNode节点送入候选堆
  4. for 候选堆不为空:
    1. 从候选堆pop顶点node
    2. 如果node.id == dstNode.id, 循环结束
    3. 遍历从node出发的所有边, 将边的终点to的权重, 更新为min(终点权重, node.权重+边.权重)
    4. 如果to.权重 > node.权重+边.权重, 说明更新有效
    5. 如果更新有效, 判断to是否在堆中, 如果是, 则上浮以维护堆秩序, 否则, 将to节点push入候选堆
  5. 判断终点的权重是否被更新(!=无穷大), 如果是则说明存在最短路径
  6. 反向查找最短路径:
    1. 设定当前节点current = 终点
    2. push节点current进路径队列
    3. 遍历终点为current的边, 查找符合条件的node:边的起点.权重 = current.权重-边.权重
    4. push节点node进路径队列
    5. 循环1-4, 直到current == srcNode, 查找完成

设计

  • INode: 顶点接口
  • ILine: 边接口
  • IPathFinder: 最短路径查找算法接口
  • IComparator: 顶点比较接口
  • IHeap: 顶点堆接口
  • tNode: 顶点, 实现INode
  • tLine: 边, 实现ILine
  • tNodeWeightComparator: 基于权重的顶点比较器, 实现IComparator接口
  • tArrayHeap: 堆的实现
  • tDijkstraPathFinder: 狄克斯特拉算法的实现

单元测试

dijkstra_finder_test.go

  1. package graph
  2. import (
  3. "fmt"
  4. dk "learning/gooop/graph/dijkstra"
  5. "strings"
  6. "testing"
  7. )
  8. func Test_DijkstraFinder(t *testing.T) {
  9. fnAssertTrue := func(b bool, msg string) {
  10. if !b {
  11. t.Fatal(msg)
  12. }
  13. }
  14. nodes := []dk.INode{
  15. dk.NewNode("a"),
  16. dk.NewNode("b"),
  17. dk.NewNode("c"),
  18. dk.NewNode("d"),
  19. dk.NewNode("e"),
  20. dk.NewNode("f"),
  21. dk.NewNode("g"),
  22. }
  23. lines := []dk.ILine {
  24. dk.NewLine("a", "b", 9),
  25. dk.NewLine("a", "c", 2),
  26. dk.NewLine("b", "c", 6),
  27. dk.NewLine("b", "d", 3),
  28. dk.NewLine("b", "e", 1),
  29. dk.NewLine("c", "d", 2),
  30. dk.NewLine("c", "f", 9),
  31. dk.NewLine("d", "e", 5),
  32. dk.NewLine("d", "f", 6),
  33. dk.NewLine("e", "f", 3),
  34. dk.NewLine("e", "g", 7),
  35. dk.NewLine("f", "g", 4),
  36. }
  37. for _,it := range lines[:] {
  38. lines = append(lines, dk.NewLine(it.To(), it.From(), it.Weight()))
  39. }
  40. ok,path := dk.DijkstraPathFinder.FindPath(nodes, lines, "a", "g")
  41. if !ok {
  42. t.Fatal("failed to find min path")
  43. }
  44. fnPathToString := func(nodes []dk.INode) string {
  45. items := make([]string, len(nodes))
  46. for i,it := range nodes {
  47. items[i] = fmt.Sprintf("%s", it)
  48. }
  49. return strings.Join(items, " ")
  50. }
  51. pathString := fnPathToString(path)
  52. t.Log(pathString)
  53. fnAssertTrue(pathString == "a(0) c(2) d(4) f(10) g(14)", "incorrect path")
  54. }

测试输出

  1. $ go test -v dijkstra_finder_test.go
  2. === RUN Test_DijkstraFinder
  3. dijkstra_finder_test.go:63: a(0) c(2) d(4) f(10) g(14)
  4. --- PASS: Test_DijkstraFinder (0.00s)
  5. PASS
  6. ok command-line-arguments 0.001s

INode.go

顶点接口

  1. package dijkstra
  2. type INode interface {
  3. ID() string
  4. GetWeight() int
  5. SetWeight(int)
  6. }
  7. const MaxWeight = int(0x7fffffff_ffffffff)

ILine.go

边接口

  1. package dijkstra
  2. type ILine interface {
  3. From() string
  4. To() string
  5. Weight() int
  6. }

IPathFinder.go

最短路径查找算法接口

  1. package dijkstra
  2. type IPathFinder interface {
  3. FindPath(nodes []INode, lines []ILine, from string, to string) (bool,[]INode)
  4. }

IComparator.go

顶点比较接口

  1. package dijkstra
  2. type IComparator interface {
  3. Less(a interface{}, b interface{}) bool
  4. }

IHeap.go

顶点堆接口

  1. package dijkstra
  2. type IHeap interface {
  3. Size() int
  4. IsEmpty() bool
  5. IsNotEmpty() bool
  6. Push(node interface{})
  7. Pop() (bool, interface{})
  8. IndexOf(node interface{}) int
  9. ShiftUp(i int)
  10. }

tNode.go

顶点, 实现INode

  1. package dijkstra
  2. import "fmt"
  3. type tNode struct {
  4. id string
  5. weight int
  6. }
  7. func NewNode(id string) INode {
  8. return &tNode{
  9. id,MaxWeight,
  10. }
  11. }
  12. func (me *tNode) ID() string {
  13. return me.id
  14. }
  15. func (me *tNode) GetWeight() int {
  16. return me.weight
  17. }
  18. func (me *tNode) SetWeight(w int) {
  19. me.weight = w
  20. }
  21. func (me *tNode) String() string {
  22. return fmt.Sprintf("%s(%v)", me.id, me.weight)
  23. }

tLine.go

边, 实现ILine

  1. package dijkstra
  2. type tLine struct {
  3. from string
  4. to string
  5. weight int
  6. }
  7. func NewLine(from string, to string, weight int) ILine {
  8. return &tLine{
  9. from,to,weight,
  10. }
  11. }
  12. func (me *tLine) From() string {
  13. return me.from
  14. }
  15. func (me *tLine) To() string {
  16. return me.to
  17. }
  18. func (me *tLine) Weight() int {
  19. return me.weight
  20. }

tNodeWeightComparator.go

基于权重的顶点比较器, 实现IComparator接口

  1. package dijkstra
  2. import "errors"
  3. type tNodeWeightComparator struct {
  4. }
  5. func newNodeWeightComparator() IComparator {
  6. return &tNodeWeightComparator{
  7. }
  8. }
  9. func (me *tNodeWeightComparator) Less(a interface{}, b interface{}) bool {
  10. if a == nil || b == nil {
  11. panic(gNullArgumentError)
  12. }
  13. n1 := a.(INode)
  14. n2 := b.(INode)
  15. return n1.GetWeight() <= n2.GetWeight()
  16. }
  17. var gNullArgumentError = errors.New("null argument error")

tArrayHeap.go

堆的实现

  1. package dijkstra
  2. import (
  3. "errors"
  4. "fmt"
  5. "strings"
  6. )
  7. type tArrayHeap struct {
  8. comparator IComparator
  9. items []interface{}
  10. size int
  11. version int64
  12. }
  13. func newArrayHeap(comparator IComparator) IHeap {
  14. return &tArrayHeap{
  15. comparator: comparator,
  16. items: make([]interface{}, 0),
  17. size: 0,
  18. version: 0,
  19. }
  20. }
  21. func (me *tArrayHeap) Size() int {
  22. return me.size
  23. }
  24. func (me *tArrayHeap) IsEmpty() bool {
  25. return me.size <= 0
  26. }
  27. func (me *tArrayHeap) IsNotEmpty() bool {
  28. return !me.IsEmpty()
  29. }
  30. func (me *tArrayHeap) Push(value interface{}) {
  31. me.version++
  32. me.ensureSize(me.size + 1)
  33. me.items[me.size] = value
  34. me.size++
  35. me.ShiftUp(me.size - 1)
  36. me.version++
  37. }
  38. func (me *tArrayHeap) ensureSize(size int) {
  39. for ;len(me.items) < size; {
  40. me.items = append(me.items, nil)
  41. }
  42. }
  43. func (me *tArrayHeap) parentOf(i int) int {
  44. return (i - 1) / 2
  45. }
  46. func (me *tArrayHeap) leftChildOf(i int) int {
  47. return i*2 + 1
  48. }
  49. func (me *tArrayHeap) rightChildOf(i int) int {
  50. return me.leftChildOf(i) + 1
  51. }
  52. func (me *tArrayHeap) last() (i int, v interface{}) {
  53. if me.IsEmpty() {
  54. return -1, nil
  55. }
  56. i = me.size - 1
  57. v = me.items[i]
  58. return i,v
  59. }
  60. func (me *tArrayHeap) IndexOf(node interface{}) int {
  61. n := -1
  62. for i,it := range me.items {
  63. if it == node {
  64. n = i
  65. break
  66. }
  67. }
  68. return n
  69. }
  70. func (me *tArrayHeap) ShiftUp(i int) {
  71. if i <= 0 {
  72. return
  73. }
  74. v := me.items[i]
  75. pi := me.parentOf(i)
  76. pv := me.items[pi]
  77. if me.comparator.Less(v, pv) {
  78. me.items[pi], me.items[i] = v, pv
  79. me.ShiftUp(pi)
  80. }
  81. }
  82. func (me *tArrayHeap) Pop() (bool, interface{}) {
  83. if me.IsEmpty() {
  84. return false, nil
  85. }
  86. me.version++
  87. top := me.items[0]
  88. li, lv := me.last()
  89. me.items[0] = nil
  90. me.size--
  91. if me.IsEmpty() {
  92. return true, top
  93. }
  94. me.items[0] = lv
  95. me.items[li] = nil
  96. me.shiftDown(0)
  97. me.version++
  98. return true, top
  99. }
  100. func (me *tArrayHeap) shiftDown(i int) {
  101. pv := me.items[i]
  102. ok, ci, cv := me.minChildOf(i)
  103. if ok && me.comparator.Less(cv, pv) {
  104. me.items[i], me.items[ci] = cv, pv
  105. me.shiftDown(ci)
  106. }
  107. }
  108. func (me *tArrayHeap) minChildOf(p int) (ok bool, i int, v interface{}) {
  109. li := me.leftChildOf(p)
  110. if li >= me.size {
  111. return false, 0, nil
  112. }
  113. lv := me.items[li]
  114. ri := me.rightChildOf(p)
  115. if ri >= me.size {
  116. return true, li, lv
  117. }
  118. rv := me.items[ri]
  119. if me.comparator.Less(lv, rv) {
  120. return true, li, lv
  121. } else {
  122. return true, ri, rv
  123. }
  124. }
  125. func (me *tArrayHeap) String() string {
  126. level := 0
  127. lines := make([]string, 0)
  128. lines = append(lines, "")
  129. for {
  130. n := 1<<level
  131. min := n - 1
  132. max := n + min - 1
  133. if min >= me.size {
  134. break
  135. }
  136. line := make([]string, 0)
  137. for i := min;i <= max;i++ {
  138. if i >= me.size {
  139. break
  140. }
  141. line = append(line, fmt.Sprintf("%4d", me.items[i]))
  142. }
  143. lines = append(lines, strings.Join(line, ","))
  144. level++
  145. }
  146. return strings.Join(lines, "\n")
  147. }
  148. var gNoMoreElementsError = errors.New("no more elements")

tDijkstraPathFinder.go

狄克斯特拉算法的实现

  1. package dijkstra
  2. type tDijkstraPathFinder struct {
  3. }
  4. func newDijkstraPathFinder() IPathFinder {
  5. return &tDijkstraPathFinder{}
  6. }
  7. func (me *tDijkstraPathFinder) FindPath(nodes []INode, lines []ILine, srcID string, dstID string) (bool,[]INode) {
  8. // 节点索引
  9. mapNodes := make(map[string]INode, 0)
  10. for _,it := range nodes {
  11. mapNodes[it.ID()] = it
  12. }
  13. srcNode, ok := mapNodes[srcID]
  14. if !ok {
  15. return false, nil
  16. }
  17. dstNode,ok := mapNodes[dstID]
  18. if !ok {
  19. return false, nil
  20. }
  21. // 边的索引
  22. mapFromLines := make(map[string][]ILine, 0)
  23. mapToLines := make(map[string][]ILine, 0)
  24. for _, it := range lines {
  25. if v,ok := mapFromLines[it.From()];ok {
  26. mapFromLines[it.From()] = append(v, it)
  27. } else {
  28. mapFromLines[it.From()] = []ILine{ it }
  29. }
  30. if v,ok := mapToLines[it.To()];ok {
  31. mapToLines[it.To()] = append(v, it)
  32. } else {
  33. mapToLines[it.To()] = []ILine{ it }
  34. }
  35. }
  36. // 设置from节点的weight为0, 其他节点的weight为MaxWeight
  37. for _,it := range nodes {
  38. if it.ID() == srcID {
  39. it.SetWeight(0)
  40. } else {
  41. it.SetWeight(MaxWeight)
  42. }
  43. }
  44. // 将起点push到堆
  45. heap := newArrayHeap(newNodeWeightComparator())
  46. heap.Push(srcNode)
  47. // 遍历候选节点
  48. for heap.IsNotEmpty() {
  49. _, top := heap.Pop()
  50. from := top.(INode)
  51. if from.ID() == dstID {
  52. break
  53. }
  54. links, ok := mapFromLines[from.ID()]
  55. if ok {
  56. for _,line := range links {
  57. if to,ok := mapNodes[line.To()];ok {
  58. if me.updateWeight(from, to, line) {
  59. n := heap.IndexOf(to)
  60. if n >= 0 {
  61. heap.ShiftUp(n)
  62. } else {
  63. heap.Push(to)
  64. }
  65. }
  66. }
  67. }
  68. }
  69. }
  70. // 逆向查找最短路径
  71. if dstNode.GetWeight() >= MaxWeight {
  72. return false, nil
  73. }
  74. path := []INode{ dstNode }
  75. current := dstNode
  76. maxRound := len(lines)
  77. for ;current != srcNode && maxRound > 0;maxRound-- {
  78. linkedLines, _ := mapToLines[current.ID()]
  79. for _,line := range linkedLines {
  80. from, _ := mapNodes[line.From()]
  81. if from.GetWeight() == current.GetWeight() - line.Weight() {
  82. current = from
  83. path = append(path, from)
  84. }
  85. }
  86. }
  87. if current != srcNode {
  88. return false, nil
  89. }
  90. me.reverse(path)
  91. return true, path
  92. }
  93. func (me *tDijkstraPathFinder) reverse(nodes []INode) {
  94. for i,j := 0, len(nodes)-1;i < j;i,j=i+1,j-1 {
  95. nodes[i], nodes[j] = nodes[j], nodes[i]
  96. }
  97. }
  98. func (me *tDijkstraPathFinder) updateWeight(from INode, to INode, line ILine) bool {
  99. w := me.min(from.GetWeight() + line.Weight(), to.GetWeight())
  100. if to.GetWeight() > w {
  101. to.SetWeight(w)
  102. return true
  103. }
  104. return false
  105. }
  106. func (me *tDijkstraPathFinder) min(a, b int) int {
  107. if a <= b {
  108. return a
  109. }
  110. return b
  111. }
  112. var DijkstraPathFinder = newDijkstraPathFinder()

(end)