Hessian框架简介
Hessian是一个轻量级的remoting onhttp工具,使用简单的方法提供了RMI的功能。 相比WebService,Hessian更简单、快捷。采用的是二进制RPC协议,因为采用的是二进制协议,所以它很适合于发送二进制数据。
参考链接:http://hessian.caucho.com/doc/hessian-overview.xtp
前言
很多人做安全服务经常会碰到hessian开发的应用,特别是在app中应用最多,这次通过讲解hessian框架的包结构进一步分解渗透测试的难度,让二进制包的测试变的跟普通的请求包一样简单。
框架代码分析
根据官网给出来的默认配置如下web.xml
<servlet-mapping><servlet-name>HessianSpringInvokeService</servlet-name><url-pattern>/*.hessian</url-pattern></servlet-mapping>
跟进分析HessianSpringInvokeService:
protected void service(HttpServletRequest var1, HttpServletResponse var2) throws ServletException, IOException {String var3 = var1.getRequestURI();int var4 = var3.lastIndexOf("/");if(var4 > 0) {var3 = var3.substring(var4 + 1);}if(!var1.getMethod().equals("POST")) {var2.setStatus(500, "Hessian Requires POST");PrintWriter var16 = var2.getWriter();var2.setContentType("text/html");var16.println("<h1>Hessian Requires POST</h1>");} else {try {ServletInputStream var7 = var1.getInputStream();ServletOutputStream var8 = var2.getOutputStream();var2.setContentType("application/x-hessian");int var9 = var7.read();int var10;int var11;Object var12;Object var13;if(var9 == 72) {var10 = var7.read();var11 = var7.read();if(var10 != 2 || var11 != 0) {throw new IOException("Version " + var10 + "." + var11 + " is not understood");}var12 = this.createHessian2Input(var7);var13 = new Hessian2Output(var8);((AbstractHessianInput)var12).readCall();} else {if(var9 != 99) {throw new IOException("expected \'H\' (Hessian 2.0) or \'c\' (Hessian 1.0) in hessian input at " + var9);}var10 = var7.read();var11 = var7.read();var12 = new HessianInput(var7);if(var10 >= 2) {var13 = new Hessian2Output(var8);} else {var13 = new HessianOutput(var8);}}SerializerFactory var14 = this.getSerializerFactory();((AbstractHessianInput)var12).setSerializerFactory(var14);((AbstractHessianOutput)var13).setSerializerFactory(var14);this.getSkeletonByServiceId(var3).invoke((AbstractHessianInput)var12, (AbstractHessianOutput)var13);} catch (Throwable var15) {throw new ServletException(var15);}}}
从上面的逻辑可分析出来两个主要走向
- int var9 = var7.read(); 如果这个值得ascii码为72,也就是H,紧接着又读取了两个字符,如果这两个字符的ascii不等于2或者0,那么直接就走进了反序列化逻辑
var12 = this.createHessian2Input(var7); var13 = new Hessian2Output(var8);这里存在rec漏洞,不是我们今天要讲解的,漏洞可以参考:https://github.com/mbechler/marshalsec里面对于hessian的反序列化 - int var9 = var7.read(); 如果这个值得ascii码为99,也就是c,然后再连读两个字符,从这里看出来并没有实际意义,分析为占位符,此时的post数据可以假定为c11,初始化了hessian的上下文:
``` SerializerFactory var14 = this.getSerializerFactory(); ((AbstractHessianInput)var12).setSerializerFactory(var14); ((AbstractHessianOutput)var13).setSerializerFactory(var14);
private HessianSkeleton getSkeletonByServiceId(String var1) {然后就是根据rmi服务端注册的,进行调用,这里要重点分析一下:<br />跟进getSkeletonByServiceId这个函数:<br />
}HessianSkeleton var2 = (HessianSkeleton)this.skeletons.get(var1);if(var2 != null) {return var2;} else {Object var3 = ApplusContext.getBean(var1);var2 = new HessianSkeleton(var3, var3.getClass());this.skeletons.put(var1, var2);return var2;}
<?xml version=”1.0” encoding=”UTF-8”?> <!—所有的映射都存在this.skeletons里面,假设我们要访问的请求url为:<br />http://127.0.0.1/admin.license/EncryptService.hessian<br />首先我们通过String var3 = var1.getRequestURI()获取到的uri为/admin.license/EncryptService.hessian<br />hessian和spring整合的最多,所以必定也会存在一个映射配置文件applicationContext-all.xml:<br />
- Application context definition for JPetStore’s business layer.
- Contains bean references to the transaction manager and to the DAOs in
- dataAccessContext-local/jta.xml (see web.xml’s “contextConfigLocation”).
—>
public static Object getBean(String var0) {回头看看刚才那个函数,跟进:<br />
}Object var1 = threadLocal.get();if(var1 != null && var1 instanceof Long) {Long var2 = (Long)var1;Bundle var3 = Activator.getInstance().getBundleContext().getBundle(var2.longValue());ApplicationContext var4 = getApplicationContext(var3.getSymbolicName());if(var4 == null) {var4 = (ApplicationContext)applicationContexts.get(var1);}if(var4 != null) {try {return var4.getBean(var0);} catch (Throwable var5) {;}}return getBeanFromRequiredBundles(var0, new ArrayList(), var3);} else {return null;}
public void invoke(Object service, AbstractHessianInput in, AbstractHessianOutput out) throws Exception {这里就是从配置文件获取绑定的bean,此时这个映射的hessian对应的实现接口类就有了com.ufgov.admin.license.svc.EncryptServiceImpl,当然了这个里面存在了所有的对外接口,不做分析,直接看数据包的结构,跟进invoke函数:<br />
}ServiceContext context = ServiceContext.getContext();in.skipOptionalCall();String header;while((header = in.readHeader()) != null) {Object methodName = in.readObject();context.addHeader(header, methodName);}String var14 = in.readMethod();int argLength = in.readMethodArgLength();Method method = this.getMethod(var14 + "__" + argLength);if(method == null) {method = this.getMethod(var14);}if(method == null) {out.writeFault("NoSuchMethodException", "The service has no method named: " + in.getMethod(), (Object)null);out.close();} else if("_hessian_getAttribute".equals(var14)) {String var15 = in.readString();in.completeCall();String var16 = null;if("java.api.class".equals(var15)) {var16 = this.getAPIClassName();} else if("java.home.class".equals(var15)) {var16 = this.getHomeClassName();} else if("java.object.class".equals(var15)) {var16 = this.getObjectClassName();}out.writeReply(var16);out.close();} else {Class[] args = method.getParameterTypes();if(argLength != args.length && argLength >= 0) {out.writeFault("NoSuchMethod", "method " + method + " argument length mismatch, received length=" + argLength, (Object)null);out.close();} else {Object[] values = new Object[args.length];for(int result = 0; result < args.length; ++result) {values[result] = in.readObject(args[result]);}Object var17 = null;try {var17 = method.invoke(service, values);} catch (Throwable var13) {Throwable e = var13;if(var13 instanceof InvocationTargetException) {e = ((InvocationTargetException)var13).getTargetException();}log.log(Level.FINE, this + " " + e.toString(), e);out.writeFault("ServiceException", e.getMessage(), e);out.close();return;}in.completeCall();out.writeReply(var17);out.close();}}
public String readMethod() throws IOException {这里的readHeader先不关注其内容,直接跳跃读取method<br />
}int tag = this.read();if(tag != 109) {throw this.error("expected hessian method (\'m\') at " + this.codeName(tag));} else {int d1 = this.read();int d2 = this.read();this._isLastChunk = true;this._chunkLength = d1 * 256 + d2;this._sbuf.setLength(0);int ch;while((ch = this.parseChar()) >= 0) {this._sbuf.append((char)ch);}this._method = this._sbuf.toString();return this._method;}
Method method = this.getMethod(var14 + “__” + argLength);从这里可以看出来,获取接口里面函数的方法字符为ascii为109 也就是m,这时候的post为c12m,然后继续再读取两个字符,用他的ascii码了通过计算一个长度,并取得后面的字符串,我们假设方法为getmodelCodeInfo,那么m后面的两个字符算出来要是个16长度最后才能返回getmodelCodeInfo <br />如果d1为0x00字符,d2 为0x10,这样就是一个十六,那么此时的post为c12m%00%10getmodelCodeInfo<br />下来走到:<br />
protected AbstractSkeleton(Class apiClass) {这里我看看初始化是怎么存储的:<br />
}this._apiClass = apiClass;Method[] methodList = apiClass.getMethods();for(int i = 0; i < methodList.length; ++i) {Method method = methodList[i];if(this._methodMap.get(method.getName()) == null) {this._methodMap.put(method.getName(), methodList[i]);}Class[] param = method.getParameterTypes();String mangledName = method.getName() + "__" + param.length;this._methodMap.put(mangledName, methodList[i]);this._methodMap.put(mangleName(method, false), methodList[i]);}
public Object readObject() throws IOException {这里获取了所有的rmi的服务端接口所对应的方法,存储的是”方法名_参数的个数”,最后通过var17 = method.invoke(service, values);直接进行了反射调用,后面就是读取以后的参数字符串<br />
}int tag = this.read();String type;int type1;switch(tag) {case 66:case 98:this._isLastChunk = tag == 66;this._chunkLength = (this.read() << 8) + this.read();ByteArrayOutputStream url2 = new ByteArrayOutputStream();while((type1 = this.parseByte()) >= 0) {url2.write(type1);}return url2.toByteArray();case 68:return new Double(this.parseDouble());case 70:return Boolean.valueOf(false);case 73:return new Integer(this.parseInt());case 76:return new Long(this.parseLong());case 77:type = this.readType();return this._serializerFactory.readMap(this, type);case 78:return null;case 82:type1 = this.parseInt();return this._refs.get(type1);case 83:case 115:this._isLastChunk = tag == 83;this._chunkLength = (this.read() << 8) + this.read();this._sbuf.setLength(0);while((type1 = this.parseChar()) >= 0) {this._sbuf.append((char)type1);}return this._sbuf.toString();case 84:return Boolean.valueOf(true);case 86:type = this.readType();int url1 = this.readLength();return this._serializerFactory.readList(this, url1, type);case 88:case 120:this._isLastChunk = tag == 88;this._chunkLength = (this.read() << 8) + this.read();return this.parseXML();case 100:return new Date(this.parseLong());case 114:type = this.readType();String url = this.readString();return this.resolveRemote(type, url);default:throw this.error("unknown code for readObject at " + this.codeName(tag));}
private int parseChar() throws IOException {这里这里我们选择asiic为83的而不选择115 因为两个逻辑等级,因为后面的parseChar有问题<br />
}while(this._chunkLength <= 0) {if(this._isLastChunk) {return -1;}int code = this.read();switch(code) {case 83:case 88:this._isLastChunk = true;this._chunkLength = (this.read() << 8) + this.read();break;case 115:case 120:this._isLastChunk = false;this._chunkLength = (this.read() << 8) + this.read();break;default:throw this.expect("string", code);}}--this._chunkLength;return this.parseUTF8Char();
public void readEnd() throws IOException {如果是83 那么久说明标志位结束了,整个语句结束的所有标志位:<br />
} ``` 可以看出来结束字符为z,那么此时的postdata就基本已经成型了,c12m%00%10getmodelCodeInfoS%0081’ union select USER,NULL,NULL,NULL,NULL from dual – sdzint code = this.read();if(code != 122) {throw this.error("unknown code at " + this.codeName(code));}
这里的包结构就一目了然了
这里一定要记住参数长度是十六进制的表示,到此整个框架的流程,和数据包的构成方式就一目了然,对外网一个框架的请求演示如下:
渗透测试方法
对上面的请求包hex:
53表示S,00表示占位,38表示后面的参数值的长度这里换算为56个字符
总结
- hessian结构的要严格限制序列化和反序列化操作,以官方最新版本为主
- 正常的构造请求包,修改参数值,相对应的要去修改对应的步长,不管数据结构有多复杂,不管是字符型,数字型,对象型,最终的解释都落在值上,只需要修改被测试的值前面的步长大于等于payload长度,多出来的字符可以用空格替代或者任意字符,比如注入可以用注释,然后多出来的就任意字符占位即可
