
class Solution { public int[][] outerTrees(int[][] trees) { int n = trees.length; if (n < 4) { return trees; } /* 按照 x 大小进行排序,如果 x 相同,则按照 y 的大小进行排序 */ Arrays.sort(trees, (a, b) -> { if (a[0] == b[0]) { return a[1] - b[1]; } return a[0] - b[0]; }); List<Integer> list = new ArrayList<>(); boolean[] used = new boolean[n]; /* list[0] 需要入栈两次,不进行标记 */ list.add(0); /* 求出凸包的下半部分 */ for (int i = 1; i < n; i++) { while (list.size() > 1 && cross(trees[list.get(list.size() - 2)], trees[list.get(list.size() - 1)], trees[i]) < 0) { used[list.get(list.size() - 1)] = false; list.remove(list.size() - 1); } used[i] = true; list.add(i); } int m = list.size(); /* 求出凸包的上半部分 */ for (int i = n - 2; i >= 0; i--) { if (!used[i]) { while (list.size() > m && cross(trees[list.get(list.size() - 2)], trees[list.get(list.size() - 1)], trees[i]) < 0) { used[list.get(list.size() - 1)] = false; list.remove(list.size() - 1); } used[i] = true; list.add(i); } } /* list[0] 同时参与凸包的上半部分检测,因此需去掉重复的 list[0] */ list.remove(list.size() - 1); int size = list.size(); int[][] res = new int[size][2]; for (int i = 0; i < size; i++) { res[i] = trees[list.get(i)]; } return res; } /*比较斜率是否为左拐,大于0说明是左拐 * (x2-x1)/(y2-y1) - (x3-x2)/(y3-y2) = (x2-x1)(y3-y2) - (x3-x2)(y2-y1) * */ private int cross(int[] p, int[] q, int[] r) { return (q[0] - p[0]) * (r[1] - q[1]) - (q[1] - p[1]) * (r[0] - q[0]); }}
587