剑指 Offer 10- II. 青蛙跳台阶问题

记忆化递归

  1. class Solution {
  2. private int[] memo;
  3. public int numWays(int n) {
  4. // f0=1;//0
  5. // f1=1;
  6. // f2=f1+f0;//1
  7. // f3=f2+f1;
  8. // f4=f2+f3;
  9. memo = new int[n + 1];
  10. Arrays.fill(memo, -1);
  11. return jump(n);
  12. }
  13. private int jump(int n) {
  14. if (memo[n] != -1) {
  15. return memo[n];
  16. }//用到缓存
  17. if (n == 1 || n == 0) {
  18. return 1;
  19. }
  20. memo[n] = (jump(n - 1) + jump(n - 2)) % 1000_000_007;
  21. return memo[n];
  22. }
  23. }

时间复杂度O(n),空间复杂度O(n)。

动态规划1

  1. //动态规划
  2. public int numWays(int n) {
  3. if (n == 0 || n == 1) {
  4. return 1;
  5. }
  6. int[] dp = new int[n + 1];
  7. dp[1] = 1;
  8. dp[2] = 2;
  9. for (int i = 3; i <= n; i++) {
  10. dp[i] = (dp[i - 2] + dp[i - 1]) % 1000_000_007;
  11. }
  12. return dp[n];
  13. }

时间复杂度O(n),空间复杂度O(n)。
https://leetcode-cn.com/problems/qing-wa-tiao-tai-jie-wen-ti-lcof/solution/mian-shi-ti-10-ii-qing-wa-tiao-tai-jie-wen-ti-dong/

动态规划2

  1. public int numWays(int n) {
  2. if (n == 0 || n == 1) {
  3. return 1;
  4. }
  5. int pre = 1, cur = 2;
  6. for (int i = 3; i <= n; i++) {
  7. int tmp = (pre + cur) % 1000_000_007;
  8. pre = cur;
  9. cur = tmp;
  10. }
  11. return cur;
  12. }

O(1)空间复杂度的动态规划。