Review some applications of derivatives:

Concavity

Concave up/down, depending on whether the derivative funciton is increasing or decreasing.

Note: concavity does not depend on the increasing or decreasing of the funciton itself.

At a point x the convacity of 14-OCT - 图1 changes 14-OCT - 图2 either 14-OCT - 图3 vanishes at x, or 14-OCT - 图4 is undefined at 14-OCT - 图5.

Note: 14-OCT - 图6 ! That is, the above condition (to right of the “14-OCT - 图7“ sign) is only necessary, not sufficient.

Second derivative test

(a complement to the first derivative test; both of thest tests help to determine whether 14-OCT - 图8 takes an extremum at a point 14-OCT - 图9)

Recall the example for which the first derivative test fails: 14-OCT - 图10.

This function also fails the second derivative test >_<

Limits at infinity

We have studied limits of the form

14-OCT - 图11#card=math&code=%5Clim%7Bx%20%5Cto%20a%7D%20f%28x%29&id=PesSN) ![](https://g.yuque.com/gr/latex?%5Clim%7B%20x%5Cto%20a-%7D%20f(x)#card=math&code=%5Clim%7B%20x%5Cto%20a-%7D%20f%28x%29&id=ww7qX) and ![](https://g.yuque.com/gr/latex?%5Clim%7Bx%20%5Cto%20a%2B%7D%20f(x)#card=math&code=%5Clim_%7Bx%20%5Cto%20a%2B%7D%20f%28x%29&id=rAN7W)

where 14-OCT - 图12

What if 14-OCT - 图13? What are these limits 14-OCT - 图14#card=math&code=%5Clim%7Bx%20%5Cto%20%2B%5Cinfty%7D%20f%28x%29&id=ASvlW) and ![](https://g.yuque.com/gr/latex?%5Clim%7Bx%20%5Cto%20-%20%5Cinfty%7D%20f(x)#card=math&code=%5Clim_%7Bx%20%5Cto%20-%20%5Cinfty%7D%20f%28x%29&id=gjsyq) ?

These two are both one-sided limits.

14-OCT - 图15 means 14-OCT - 图16. 14-OCT - 图17 this means that 14-OCT - 图18 becomes arbitaryly large.

14-OCT - 图19 , this means that 14-OCT - 图20 and the absolute value 14-OCT - 图21 of 14-OCT - 图22 becomes sufficiently large.

Horizontal asymptotes

14-OCT - 图23, where 14-OCT - 图24#card=math&code=L%20%3D%20%5Clim_%7B%20x%5Cto%20%5Cpm%20%5Cinfty%7D%20f%28x%29&id=PLxdm) .

14-OCT - 图25 . 14-OCT - 图26. So 14-OCT - 图27 is a horizontal asymptote for 14-OCT - 图28.

Vertical asymptotes

14-OCT - 图29, where $ \lim_{x\to c\pm} f(x) = \pm \infty$

Note: there is still a third possbility of asymptote: oblique asymptote.

14-OCT - 图30%7C%20%5Cleq%201#card=math&code=%7C%5Ccos%20%28x%29%7C%20%5Cleq%201&id=RhKZU). So when 14-OCT - 图31, 14-OCT - 图32 has an infinite discontinuity at 14-OCT - 图33.

The squeezing theorem tells us that 14-OCT - 图34%2Fx%20%5Cto%200#card=math&code=%5Ccos%28x%29%2Fx%20%5Cto%200&id=Lqhnw) as 14-OCT - 图35. Because

14-OCT - 图36%2Fx%7C%20%5Cleq%201%2F%7Cx%7C#card=math&code=0%5Cleq%20%7C%5Ccos%28x%29%2Fx%7C%20%5Cleq%201%2F%7Cx%7C&id=DsSKW).

L’Hôpital’s rule

L’Hospital

Case 1: Indeterminate form 14-OCT - 图37

14-OCT - 图38-f(a)%7D%7Bx-a%7D#card=math&code=%5Cfrac%7Bf%28x%29-f%28a%29%7D%7Bx-a%7D&id=HEdo3) is an indeterminate form as 14-OCT - 图39.

14-OCT - 图40#card=math&code=%5Clim%7Bx%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7Be%5E%7B1%2Fx%7D-1%7D%7B1%2Fx%7D%20%3D%20%5Clim%7B%20x%20%5Cto%20%5Cinfty%7D%20x%2A%28e%5E%7B1%2Fx%7D-1%29&id=ADskM) (14-OCT - 图41 ) And 14-OCT - 图42.

Remark: the L’Hôpital’s rule in the cases 0/0 and 14-OCT - 图43 , is based on the assumption that the limit 14-OCT - 图44%7D%7Bg’(x)%7D#card=math&code=%5Clim%7Bx%20%5Cto%20a%7D%5Cfrac%7Bf%27%28x%29%7D%7Bg%27%28x%29%7D&id=ZmCP5) exists. If this limit does not exist, neither do the original limit ![](https://g.yuque.com/gr/latex?%5Clim%7Bx%20%5Cto%20a%7D%5Cfrac%7Bf(x)%7D%7Bg(x)%7D#card=math&code=%5Clim_%7Bx%20%5Cto%20a%7D%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D&id=XuRQL).

Other indeterminant forms: 14-OCT - 图45. (left for next week)