09-December-2021 Homework:

    Openstax Calculus textbook (volume 1):

    Page 592, Exercises 5.5, Problems 306, 307, 309, 311, 312.

    Page 605, Exercises 5.6, Problems 331, 334, 344, 346, 349, 355, 358, 372.


    Solutions

    Exercises 5.5

    Prob. 306. Let sol091221 - 图1#card=math&code=u%20%3D%20%5Ccos%20%282%5Ctheta%29). Then sol091221 - 图2%5C%2C%20d%5Ctheta#card=math&code=d%20u%20%3D%20-2%5Csin%282%5Ctheta%29%5C%2C%20d%5Ctheta). We have

    sol091221 - 图3%20%5Csin%20(2%5Ctheta)%5C%2C%20d%5Ctheta%20%3D%20-%5Cfrac%7B1%7D%7B6%7D%20%5Cint_0%5E%7B%5Cpi%7D%203%5Ccos%5E2%20(2%5Ctheta)%20d%20(%5Ccos%202%5Ctheta)%20%3D%20-%5Cfrac%7B1%7D%7B6%7D%20%5Cint_1%5E1%20d%20(%5Ccos%5E3%20(2%5Ctheta)%20)%20%3D%200#card=math&code=%5Cint_0%5E%7B%5Cpi%7D%20%5Ccos%5E2%282%5Ctheta%29%20%5Csin%20%282%5Ctheta%29%5C%2C%20d%5Ctheta%20%3D%20-%5Cfrac%7B1%7D%7B6%7D%20%5Cint_0%5E%7B%5Cpi%7D%203%5Ccos%5E2%20%282%5Ctheta%29%20d%20%28%5Ccos%202%5Ctheta%29%20%3D%20-%5Cfrac%7B1%7D%7B6%7D%20%5Cint_1%5E1%20d%20%28%5Ccos%5E3%20%282%5Ctheta%29%20%29%20%3D%200).

    Prob. 307. Let sol091221 - 图4. Then sol091221 - 图5.

    sol091221 - 图6%20%5Csin(t%5E2)%20%5C%2C%20dt%20%20%3D%20%5Cfrac%7B1%7D%7B4%7D%20%5Cint_0%5E%7B%5Csqrt%7B%5Cpi%7D%7D2%5Csin%20(t%5E2)%20%5Ccos%20(t%5E2)%20d(t%5E2)%20%3D%20%5Cfrac%7B1%7D%7B4%7D%5Cint_0%5E%7B%5Cpi%7D%202%5Csin(u)d%20(%5Csin(u))%20%3D%20%5Cfrac%7B1%7D%7B4%7D%20%5Cint_0%5E%7B%5Cpi%7D%20d%20(%5Csin%5E2(u))%20%3D0#card=math&code=%5Cint_0%5E%7B%5Csqrt%7B%5Cpi%7D%7D%20t%20%5Ccos%28t%5E2%29%20%5Csin%28t%5E2%29%20%5C%2C%20dt%20%20%3D%20%5Cfrac%7B1%7D%7B4%7D%20%5Cint_0%5E%7B%5Csqrt%7B%5Cpi%7D%7D2%5Csin%20%28t%5E2%29%20%5Ccos%20%28t%5E2%29%20d%28t%5E2%29%20%3D%20%5Cfrac%7B1%7D%7B4%7D%5Cint_0%5E%7B%5Cpi%7D%202%5Csin%28u%29d%20%28%5Csin%28u%29%29%20%3D%20%5Cfrac%7B1%7D%7B4%7D%20%5Cint_0%5E%7B%5Cpi%7D%20d%20%28%5Csin%5E2%28u%29%29%20%3D0) , since sol091221 - 图7%3D%5Csin(0)%3D0#card=math&code=%5Csin%28%5Cpi%29%3D%5Csin%280%29%3D0).

    Prob. 309. Let sol091221 - 图8, then sol091221 - 图9. As sol091221 - 图10 goes from sol091221 - 图11 to sol091221 - 图12, sol091221 - 图13 will go from sol091221 - 图14 to sol091221 - 图15.

    sol091221 - 图16%5E2%7D%20dt%20%3D%20%5Cint%7B-1%2F2%7D%5E%7B1%2F2%7D%20%5Cfrac%7B-2u%7D%7B1%2Bu%5E2%7D%20du%20%3D0#card=math&code=%5Cint_0%5E1%20%5Cfrac%7B1-2t%7D%7B1%2B%28t-%5Cfrac%7B1%7D%7B2%7D%29%5E2%7D%20dt%20%3D%20%5Cint%7B-1%2F2%7D%5E%7B1%2F2%7D%20%5Cfrac%7B-2u%7D%7B1%2Bu%5E2%7D%20du%20%3D0), since the integrand sol091221 - 图17 is an odd function with respect to sol091221 - 图18, and the interval sol091221 - 图19 is symmetric about the origin.

    Prob. 311. Let sol091221 - 图20, then sol091221 - 图21. As sol091221 - 图22 goes from sol091221 - 图23 to sol091221 - 图24, sol091221 - 图25 will go from sol091221 - 图26 to sol091221 - 图27.

    sol091221 - 图28%20%5Ccos%20(%5Cpi%20t)%5C%2C%20dt%20%3D%20%5Cint1%5E%7B-1%7D%20u%5C%2C%20%5Ccos%20(%5Cpi%20-%20%5Cpi%20u))%20(-du)%20%3D%20-%5Cint%7B-1%7D%5E1%20u%20%5Ccos%20(%5Cpi%20u)%20%5C%2C%20du%20%3D0#card=math&code=%5Cint0%5E2%20%281-t%29%20%5Ccos%20%28%5Cpi%20t%29%5C%2C%20dt%20%3D%20%5Cint_1%5E%7B-1%7D%20u%5C%2C%20%5Ccos%20%28%5Cpi%20-%20%5Cpi%20u%29%29%20%28-du%29%20%3D%20-%5Cint%7B-1%7D%5E1%20u%20%5Ccos%20%28%5Cpi%20u%29%20%5C%2C%20du%20%3D0), because sol091221 - 图29#card=math&code=u%20%5Ccos%20%28%5Cpi%20u%29) is odd, and sol091221 - 图30 is symmetric about the origin.

    Prob. 312. Let sol091221 - 图31. We have

    sol091221 - 图32, because the integrand $\cos^2 u \sin u $ is odd, and sol091221 - 图33 is symmetric about the origin.


    Exercises 5.6

    Prob. 331. Let sol091221 - 图34. Then sol091221 - 图35. Thus, sol091221 - 图36%7D%20%3D%20%5Cint%20%5Cfrac%7Bd%20u%7D%7Bu%20%5Cln%20u%7D%20%3D%20%5Cint%20%5Cfrac%7Bd%20(%5Cln%20u)%7D%7B%5Cln%20u%7D%20%3D%20%5Cln%20(%5Cln%20u)%2BC%20%3D%20%5Cln%20(%5Cln%20(%5Cln%20x))%2BC#card=math&code=%5Cint%20%5Cfrac%7Bd%20x%7D%7Bx%20%5Cln%20x%20%5Cln%28%5Cln%20x%29%7D%20%3D%20%5Cint%20%5Cfrac%7Bd%20u%7D%7Bu%20%5Cln%20u%7D%20%3D%20%5Cint%20%5Cfrac%7Bd%20%28%5Cln%20u%29%7D%7B%5Cln%20u%7D%20%3D%20%5Cln%20%28%5Cln%20u%29%2BC%20%3D%20%5Cln%20%28%5Cln%20%28%5Cln%20x%29%29%2BC).

    Prob. 334. Since sol091221 - 图37)%20%3D%20%5Cfrac%7B%5Ccos%20x%7D%7B%5Csin%20x%7D%20dx%20%3D%20%5Cfrac%7Bd%20x%7D%7B%5Ctan%20x%7D#card=math&code=d%28%5Cln%20%28%5Csin%20x%29%29%20%3D%20%5Cfrac%7B%5Ccos%20x%7D%7B%5Csin%20x%7D%20dx%20%3D%20%5Cfrac%7Bd%20x%7D%7B%5Ctan%20x%7D), so

    sol091221 - 图38%7D%7B%5Ctan%20x%7Dd%20x%20%3D%20%5Cint%20%5Cln(%5Csin(x))%20d%20(%5Cln(%5Csin%20x))%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Cln%5E2%20(%5Csin%20x)%20%2BC#card=math&code=%5Cint%20%5Cfrac%7B%5Cln%20%28%5Csin%20x%29%7D%7B%5Ctan%20x%7Dd%20x%20%3D%20%5Cint%20%5Cln%28%5Csin%28x%29%29%20d%20%28%5Cln%28%5Csin%20x%29%29%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Cln%5E2%20%28%5Csin%20x%29%20%2BC).

    Prob. 344. Let sol091221 - 图39, then sol091221 - 图40%2BC#card=math&code=%5Cint%20%5Cfrac%7B%5Cln%20x%7D%7Bx%5E2%7D%20dx%20%3D%20%5Cint%20%5Cln%20u%20%5C%2C%20du%20%3D%20u%5Cln%20u%20-%20u%20%2BC%20%3D%20-%5Cfrac%7B1%7D%7Bx%7D%28%5Cln%20x%20%2B%201%29%2BC).

    Prob. 346. The integral is sol091221 - 图41. (Note: because sol091221 - 图42 for all sol091221 - 图43, and when sol091221 - 图44, sol091221 - 图45. Thus, the area under the graph of sol091221 - 图46 from sol091221 - 图47 to sol091221 - 图48 is always positive. Thus, we should use the absolute value of sol091221 - 图49, but not just sol091221 - 图50 itself.)

    Prob. 349. Because sol091221 - 图51%2B%5Ccos(3x)%5D%20%5Cbig)’%20%3D%20%5Cfrac%7B3%5Ccos(3x)-3%5Csin(3x)%7D%7B%5Csin(3x)%2B%5Ccos(3x)%7D#card=math&code=%5Cbig%28%5Cln%20%5B%5Csin%283x%29%2B%5Ccos%283x%29%5D%20%5Cbig%29%27%20%3D%20%5Cfrac%7B3%5Ccos%283x%29-3%5Csin%283x%29%7D%7B%5Csin%283x%29%2B%5Ccos%283x%29%7D), the original integral is equal to

    sol091221 - 图52%2B%5Ccos(3x)%5D%20)%20%3D%20-%5Cfrac%7B1%7D%7B3%7D%20%5Cln%20%5B%5Csin(3x)%2B%5Ccos(3x)%5D%20%2BC#card=math&code=-%5Cfrac%7B1%7D%7B3%7D%20%5Cint%20d%28%5Cln%20%5B%5Csin%283x%29%2B%5Ccos%283x%29%5D%20%29%20%3D%20-%5Cfrac%7B1%7D%7B3%7D%20%5Cln%20%5B%5Csin%283x%29%2B%5Ccos%283x%29%5D%20%2BC).

    Prob. 355. Because sol091221 - 图53‘%3D%203%2B6x%2B3x%5E2%20%3D%203(1%2B2x%2Bx%5E2)#card=math&code=%283x%2B3x%5E2%2Bx%5E3%29%27%3D%203%2B6x%2B3x%5E2%20%3D%203%281%2B2x%2Bx%5E2%29), the original integral is equal to sol091221 - 图54%20%3D%20%5Cfrac%7B1%7D%7B3%7D%20%5Cln%20(%5Cfrac%7B26%7D%7B7%7D)#card=math&code=%5Cfrac%7B1%7D%7B3%7D%20%5Cint_1%5E2%20d%28%5Cln%20%7C3x%2B3x%5E2%2Bx%5E3%7C%29%20%3D%20%5Cfrac%7B1%7D%7B3%7D%20%5Cln%20%28%5Cfrac%7B26%7D%7B7%7D%29).

    Prob. 358. Using Formula 14 in Appendix A (basic integrals), we have

    sol091221 - 图55#card=math&code=%5Cint%7B%5Cpi%2F6%7D%5E%7B%5Cpi%2F2%7D%20%5Ccsc%20x%5C%2C%20dx%20%3D%20%5B%5Cln%7C%5Ccsc%20x%20-%20%5Ccot%20x%7C%5D%7B%5Cpi%2F6%7D%5E%7B%5Cpi%2F2%7D%20%3D%20%5Cln%282%2B%5Csqrt%7B3%7D%29).

    Prob. 372. sol091221 - 图56%7D%7Bx%7Ddx%20%3D%20%5Cfrac%7B3%7D%7B2%7D%5Cln%20(10)#card=math&code=%5Cint%7B10%7D%5E%7B100%7D%20%5Cfrac%7B%5Clog%7B10%7D%28x%29%7D%7Bx%7Ddx%20%3D%20%5Cfrac%7B3%7D%7B2%7D%5Cln%20%2810%29). Here we use sol091221 - 图57%20%3D%20%5Cln%20(x)%2F%5Cln%20(10)#card=math&code=%5Clog_%7B10%7D%28x%29%20%3D%20%5Cln%20%28x%29%2F%5Cln%20%2810%29).