Growth rates of functions.

    A rational function is a quotient of two polynomials. So that a rational funciton in single variable, is a quotient of two polynomials in one variable.

    Let 26-OCT - 图1%2C%20q(x)#card=math&code=p%28x%29%2C%20q%28x%29&id=iGYgf) be two polynomials, of degrees 26-OCT - 图2 respetively.

    26-OCT - 图3%3Dam%20x%5Em%20%20%2B%20a%7Bm-1%7Dx%5E%7Bm-1%7D%20%2B%20%5Cldots%20%2B%20a1%20x%20%2B%20a_0#card=math&code=p%28x%29%3Da_m%20x%5Em%20%20%2B%20a%7Bm-1%7Dx%5E%7Bm-1%7D%20%2B%20%5Cldots%20%2B%20a_1%20x%20%2B%20a_0&id=yNTZC);

    26-OCT - 图4%20%3D%20bn%20x%5En%20%2B%20b%7Bn-1%7D%20x%5E%7Bn-1%7D%20%2B%20%5Cldots%20%2B%20b1%20x%20%2B%20b_0#card=math&code=q%28x%29%20%3D%20b_n%20x%5En%20%2B%20b%7Bn-1%7D%20x%5E%7Bn-1%7D%20%2B%20%5Cldots%20%2B%20b_1%20x%20%2B%20b_0&id=TZfCg).

    Because 26-OCT - 图5, so

    26-OCT - 图6%7D%7Bq(x)%7D%20%3D%20%5Cfrac%7Bam%7D%7Bb_n%7D#card=math&code=%5Clim%7Bx%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7Bp%28x%29%7D%7Bq%28x%29%7D%20%3D%20%5Cfrac%7Ba_m%7D%7Bb_n%7D&id=vTnQ6) if 26-OCT - 图7;

    26-OCT - 图8 if 26-OCT - 图9.

    26-OCT - 图10%7D%7Bq(x)%7D%20%20%3D%5Cfrac%7B0%7D%7Bbn%7D%20%3D0#card=math&code=%5Clim%7Bx%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7Bp%28x%29%7D%7Bq%28x%29%7D%20%20%3D%5Cfrac%7B0%7D%7Bb_n%7D%20%3D0&id=Mhbx4) if 26-OCT - 图11 .


    The power of the exponential function!

    26-OCT - 图12 26-OCT - 图13

    26-OCT - 图14, 26-OCT - 图15, 26-OCT - 图16 as $x \to \infty $

    Exponential function grows more rapidly than power functions.

    Power functions grows more rapidly than logarithmic functions.


    Remark: There is a parallel theory on comparing two functions which “shrinks” more rapidly. More precisely, suppose 26-OCT - 图17 and 26-OCT - 图18%3D%5Clim%7Bx%20%5Cto%20a%7D%20g(x)%3D0#card=math&code=%5Clim%7Bx%20%5Cto%20a%7Df%28x%29%3D%5Clim%7Bx%20%5Cto%20a%7D%20g%28x%29%3D0&id=dYaLM). We want to evaluate the indertminate limit ![](https://g.yuque.com/gr/latex?%5Clim%7Bx%20%5Cto%20a%7D%20%5Cfrac%7Bf(x)%7D%7Bg(x)%7D#card=math&code=%5Clim_%7Bx%20%5Cto%20a%7D%20%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D&id=jtbrA). Possible answers: 26-OCT - 图19, where 26-OCT - 图20.

    A good example is Example 4.41 in the Openstax Calculus textbook (vol. 1).

    26-OCT - 图21#card=math&code=%5Clim%7Bx%20%5Cto%200%2B%7D%20x%20%5Ccdot%20%5Cln%28x%29&id=ORMIh). If we rewrite it into the form ![](https://g.yuque.com/gr/latex?%5Clim%7Bx%20%5Cto%200%2B%7D%20%5Cfrac%7Bx%7D%7B1%2F%5Cln(x)%7D#card=math&code=%5Clim_%7Bx%20%5Cto%200%2B%7D%20%5Cfrac%7Bx%7D%7B1%2F%5Cln%28x%29%7D&id=vaq6a), it is a 26-OCT - 图22 indeterminant form.

    However, we do not evaluate it in this way. As a contrast, we should interpret this limit as a 26-OCT - 图23 form by rewrite it as 26-OCT - 图24%2F(1%2Fx)#card=math&code=%5Clim_%7Bx%20%5Cto%200%2B%7D%20%5Cln%28x%29%2F%281%2Fx%29&id=hIWkZ).

    This limit is equal to 0. This is should be helpful to understand that the power function 26-OCT - 图25 “shrinks” more rapidly than logarithmic functions. Combining with the known fact that power functions grows more rapidly than lograithmic functions, we see that power functions changes more rapidly than logarithmic functions.


    Aside: complexity of algorithms, the growth rate of functions play a role there.

    26-OCT - 图26#card=math&code=O%28%5Clog%20n%29&id=FYhfj), 26-OCT - 图27#card=math&code=O%28%5Csqrt%7Bn%7D%29&id=Dhfvx)

    Roughly, 26-OCT - 图28%20%3D%20%5C%7B%20f(n)%20%5Cmid%20%5Clim%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7Bf(n)%7D%7B%5Clog%20n%7D%20%3D%20M%20%3C%20%5Cinfty%2C%20M%20%5Cneq%200%20%5C%7D#card=math&code=O%28%5Clog%20n%29%20%3D%20%5C%7B%20f%28n%29%20%5Cmid%20%5Clim%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7Bf%28n%29%7D%7B%5Clog%20n%7D%20%3D%20M%20%3C%20%5Cinfty%2C%20M%20%5Cneq%200%20%5C%7D&id=fVQcd) .


    Linear approximation:

    Recall this motivating problem:

    Suppose the radius of our earth increases 50 cm. How much longer will the equator gain?

    The function under considering shoulde be 26-OCT - 图29%3D2%5Cpi%20r#card=math&code=C%28r%29%3D2%5Cpi%20r&id=KaOEA) .Now the linearization of 26-OCT - 图30#card=math&code=C%28r%29&id=zUSXs) at 26-OCT - 图31 is 26-OCT - 图32%2BC’(r_0)(r-r_0)#card=math&code=C%28r_0%29%2BC%27%28r_0%29%28r-r_0%29&id=UERWs) .

    26-OCT - 图33 = the radius of our earth, approximately 26-OCT - 图34 km.


    The idea of differentials:

    First example:

    Let us pick a point 26-OCT - 图35)#card=math&code=%28a%2C%20%5Ccos%28a%29%29&id=PpYoK) on the cosine curve. The tangent line to the cosine curve at this point, is

    26-OCT - 图36%20%3D%20k%20(x-a)#card=math&code=y-%5Ccos%28a%29%20%3D%20k%20%28x-a%29&id=dg5z6). 26-OCT - 图37#card=math&code=k%3D-%5Csin%28a%29&id=WQ1Bb) .

    Now construct a new coordinating system at 26-OCT - 图38)#card=math&code=%28a%2C%20%5Ccos%28a%29%29&id=K1PDP) with this point the new origin. The equation to the tangent line inside this new coordinating system will be simple: 26-OCT - 图39%5Cvert%7Bx%3Da%7D%20X#card=math&code=Y%3D%20%5Cfrac%7Bd%20%7D%7Bdx%7D%20%5Ccos%28x%29%5Cvert%7Bx%3Da%7D%20X&id=J5lOY).

    Same scenario can happen at each point 26-OCT - 图40)#card=math&code=%28b%2C%20%5Ccos%28b%29%29&id=XMSj4) on the cosine curve.

    Second example:

    Now consider another function: 26-OCT - 图41%3Dx%5E2%2B2x#card=math&code=y%3Df%28x%29%3Dx%5E2%2B2x&id=OhdSg). At the point 26-OCT - 图42#card=math&code=%28-3%2C%203%29&id=EesvY), same story can be told as the construction for cosinde curve above. The tangent line in the new coordinating system, is

    26-OCT - 图43, 26-OCT - 图44%5Cvert%7Bx%3D-3%7D%3D-4#card=math&code=k%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%20%28x%5E2%2B2x%29%5Cvert%7Bx%3D-3%7D%3D-4&id=jCWzn).

    The slope 26-OCT - 图45, which now is the ratio 26-OCT - 图46, is always equal to 26-OCT - 图47.
    When we are considering the problem at 26-OCT - 图48, then 26-OCT - 图49.