Applications/motivation of derivatives:

    1. Finding tangent lines (geometric)

    2. Computing instant speed (physics)
      [Plot the graph of position — time (vertical - horizontal)
      at the point t= a, the slope of the tangent line to the graph is the instant speed at t=a. ]

    Recall: tangent lines for circle.

    a straight line L, and a circle C,

    L and C can meet at 0, or 1, or 2 points.

    L and C meeting at 1 point, is the case that L is a tangent line of C.

    Question: Let us take the definition that a tangent line is a “limit” case of the secant lines.

    Can we write down the equation of the tangent at a point 12-OCT - 图1)#card=math&code=%28a%2C%20f%28a%29%29)?

    The equation of line has the form: 12-OCT - 图2 or 12-OCT - 图3#card=math&code=y-y_0%20%3D%20k%20%28x-%20x_0%29), where 12-OCT - 图4#card=math&code=%28x_0%2C%20y_0%29) is a fixed given point.

    What is the slope 12-OCT - 图5?

    Answer: if the limit 12-OCT - 图6-f(a)%7D%7Bx-a%7D#card=math&code=%5Clim_%7Bx%20%5Cto%20a%7D%20%5Cfrac%7Bf%28x%29-f%28a%29%7D%7Bx-a%7D) exists, then it is the required slope.

    The limit 12-OCT - 图7-f(a)%7D%7Bx-a%7D#card=math&code=%5Clim%7Bx%20%5Cto%20a%7D%20%5Cfrac%7Bf%28x%29-f%28a%29%7D%7Bx-a%7D) is a 12-OCT - 图8 indefinite form. (e.g. ![](https://g.yuque.com/gr/latex?%5Clim%7Bx%5Cto%200%7D%20%5Cfrac%7B%5Csin%20x%7D%7Bx%7D%20%3D%201#card=math&code=%5Clim_%7Bx%5Cto%200%7D%20%5Cfrac%7B%5Csin%20x%7D%7Bx%7D%20%3D%201)).

    Tricks on 3.3 Exercises

    1. 12-OCT - 图9)#card=math&code=3x%20%2818x%5E4%2B13%28x%2B1%29%29) using the derivative rule of products, or expand firstly.
    2. similary as 111.
    3. first expand into the form 12-OCT - 图10%20%3D%202%2B%205%2Fx#card=math&code=f%28x%29%20%3D%202%2B%205%2Fx).
    4. easy
    5. 12-OCT - 图11%20%3D%204x%20-%202%2Fx%20%2B%201%2Fx%5E2#card=math&code=f%28x%29%20%3D%204x%20-%202%2Fx%20%2B%201%2Fx%5E2). [Better than direct computing using the derivative rule of quotients.]
    6. Write 12-OCT - 图12#card=math&code=f%28x%29) in the form that 12-OCT - 图13%3D%201%2B8%2F(x%5E2-4)#card=math&code=f%28x%29%3D%201%2B8%2F%28x%5E2-4%29).

    Examples of Fermat’s theorem:

    1. 12-OCT - 图14%3Dx%5E2#card=math&code=f%28x%29%3Dx%5E2). At 12-OCT - 图15, 12-OCT - 图16 has a local minimum. We compute that 12-OCT - 图17%3D2x#card=math&code=f%27%28x%29%3D2x). And 12-OCT - 图18%3D0#card=math&code=f%27%280%29%3D0).
    2. 12-OCT - 图19%3D%5Csin(x)#card=math&code=y%28x%29%3D%5Csin%28x%29) . At 12-OCT - 图20#card=math&code=x%3D%20%5Cpi%2F2%2C%20y%28x%29) attains a local maximum. 12-OCT - 图21%3D%5Ccos%20(x)#card=math&code=y%27%28x%29%3D%5Ccos%20%28x%29). And 12-OCT - 图22%3D%5Ccos%20(%5Cpi%2F2)%3D0#card=math&code=y%27%28%5Cpi%2F2%29%3D%5Ccos%20%28%5Cpi%2F2%29%3D0).

    Example of Statement iii of Theorem 4.9 (First derivative test):

    12-OCT - 图23%3Dx%5E3#card=math&code=f%28x%29%3Dx%5E3). 12-OCT - 图24. 12-OCT - 图25%3D3x%5E2#card=math&code=f%27%28x%29%3D3x%5E2). 12-OCT - 图26%3D0#card=math&code=f%27%280%29%3D0). But no matter 12-OCT - 图27, we always have 12-OCT - 图28%3D3x%5E2%20%3E0#card=math&code=f%27%28x%29%3D3x%5E2%20%3E0). Thus, 12-OCT - 图29 is neither a local maximum nor a local minimum. This can also be explained by noting the monotonicity of 12-OCT - 图30: as 12-OCT - 图31 increases, 12-OCT - 图32 also increases.