Topic today: The limit

    1. What is a limit?

    2. When does a limit exists?

    3. If not existed, anything we can do to save the game?

    4. Applications of limit.
      Why is 0.999999999….. = 1?
      And the definition of Euler’s e,

      1. Given a function 28-SEP - 图1#card=math&code=y%3Df%28x%29), when 28-SEP - 图2 approaches to a fixed point (a constant) 28-SEP - 图3 from both the left and the right hand-sides, if 28-SEP - 图4#card=math&code=f%28x%29) approaches to a value 28-SEP - 图5, then we say the limit of 28-SEP - 图6#card=math&code=f%28x%29) is 28-SEP - 图7.
    5. 28-SEP - 图8%20%3D%201#card=math&code=g%28x%29%20%3D%201), if 28-SEP - 图9; 28-SEP - 图10%3D-1#card=math&code=g%28x%29%3D-1) if 28-SEP - 图11. But 28-SEP - 图12#card=math&code=g%28x%29) has no definition at 28-SEP - 图13.

    28-SEP - 图14%20%3D%20(x-2)%5E%7B-2%7D#card=math&code=h%28x%29%20%3D%20%28x-2%29%5E%7B-2%7D), this is similar to 28-SEP - 图15%20%3D%20-1%2Fx%5E2#card=math&code=y%28x%29%20%3D%20-1%2Fx%5E2).

    The function 28-SEP - 图16#card=math&code=f%28x%29) at the beginning of section 2.2, and the function 28-SEP - 图17#card=math&code=g%28x%29) in example 2.6, have a common thing: at the point where we want to find out the limit, the function has no definition, in other words, the graph of the function is broken at the point.

    Notation: 28-SEP - 图18 or 28-SEP - 图19, means (the variable) approaching to 28-SEP - 图20 from right and left, respectively.

    1. The notion of one-sided limit provides a more accurate answer to the behaviour of a function around a point which is not in the domain of the function.
      Modification of Example 2.8 (one-sided limits often appear in piecewise functions)

    28-SEP - 图21%3Dx%2B1#card=math&code=F%28x%29%3Dx%2B1) if 28-SEP - 图22, and 28-SEP - 图23%3Dx%5E2-4#card=math&code=F%28x%29%3Dx%5E2-4) if 28-SEP - 图24.

    28-SEP - 图25%3D3#card=math&code=F%282%29%3D3), while 28-SEP - 图26%3D3#card=math&code=%5Clim_%7Bx%20%5Cto%202%5E-%7D%20F%28x%29%3D3).

    Compare to the 28-SEP - 图27#card=math&code=f%28x%29): 28-SEP - 图28%3D0#card=math&code=f%282%29%3D0), and it is just 28-SEP - 图29%3D0#card=math&code=%5Clim_%7Bx%20%5Cto%202%5E%2B%7Df%28x%29%3D0).

    We can modify even worse:

    28-SEP - 图30%20%3D%20x%2B1#card=math&code=f_1%28x%29%20%3D%20x%2B1) if 28-SEP - 图31, 28-SEP - 图32%3Dx%5E2-4#card=math&code=f_1%28x%29%3Dx%5E2-4) if 28-SEP - 图33, and 28-SEP - 图34%20%3D%20100#card=math&code=f_1%282%29%20%3D%20100).

    28-SEP - 图35%20%3D%203#card=math&code=%5Clim%7Bx%20%5Cto%202%5E-%7D%20f_1%28x%29%20%3D%203), ![](https://g.yuque.com/gr/latex?%5Clim%7Bx%5Cto%202%5E%2B%7D%20f1(x)%20%3D%200#card=math&code=%5Clim%7Bx%5Cto%202%5E%2B%7D%20f_1%28x%29%20%3D%200). Neither of these one-sided limits equals to 28-SEP - 图36#card=math&code=f_1%282%29).

    Remark: Theorem 2.2 which relates one-sided and two-sided limits, is usually used to prove the non-existence of a limit for certain functions, for example, the g(x) at the beginning of section 2.2, or the limit 28-SEP - 图37, as well as the Example 2.7 28-SEP - 图38#card=math&code=%5Clim_%7Bx%5Cto%200%7D%20%5Csin%281%2Fx%29).

    Now review the three functions at the beginning of Section 2.2.

    1. Application:

    We first mention without proof of a famous limit: 28-SEP - 图39 if 28-SEP - 图40.

    28-SEP - 图41%20%3D%209(%5Cfrac%7B1%7D%7B10%7D%2B%5Cfrac%7B1%7D%7B100%7D%20%2B%20%5Cfrac%7B1%7D%7B1000%7D%2B%20…)%20%3D%209%20%5Ctimes%20%5Cfrac%7B1%7D%7B9%7D%3D1#card=math&code=0.99999999%E2%80%A6%20%3D%209%280.1%2B0.01%2B0.001%2B%E2%80%A6%29%20%3D%209%28%5Cfrac%7B1%7D%7B10%7D%2B%5Cfrac%7B1%7D%7B100%7D%20%2B%20%5Cfrac%7B1%7D%7B1000%7D%2B%20…%29%20%3D%209%20%5Ctimes%20%5Cfrac%7B1%7D%7B9%7D%3D1).

    28-SEP - 图42, 28-SEP - 图43

    28-SEP - 图44%2F(1-q)#card=math&code=Sn%20%3D%20a_1%2Ba_2%20%2B%20%5Cldots%20%2B%20a_n%20%3D%20a_1%281-q%5E%7Bn%7D%29%2F%281-q%29) where 28-SEP - 图45. ![](https://g.yuque.com/gr/latex?%5Clim%7Bn%20%5Cto%20%5Cinfty%7D%20Sn%20%3D%20%5Clim%7Bn%20%5Cto%20%5Cinfty%7D%20a1%20(1-q%5En)%2F(1-q)%20%3D%20%5Cfrac%7Ba_1%7D%7B1-q%7D%20%3D%201%2F10%20%2F%209%2F10%20%3D%201%2F9#card=math&code=%5Clim%7Bn%20%5Cto%20%5Cinfty%7D%20Sn%20%3D%20%5Clim%7Bn%20%5Cto%20%5Cinfty%7D%20a_1%20%281-q%5En%29%2F%281-q%29%20%3D%20%5Cfrac%7Ba_1%7D%7B1-q%7D%20%3D%201%2F10%20%2F%209%2F10%20%3D%201%2F9).

    What is the exact value of 28-SEP - 图46? (28-SEP - 图47 approximately)

    More general question: why do me express one real number in different form?

    We will discuss this question at Thursday’s lectures.