Recently, we review inverse functions and how to compute derivatives of inverse functions, especially the inverse trigonometric functions and their derivatives.

    Today we firstly review the chain rule (the name of the method to compute derivatives of composite of functions.)

    If 11-NOV - 图1 and 11-NOV - 图2 , then 11-NOV - 图3. So we can regard 11-NOV - 图4#card=math&code=y%3Dy%28x%29&id=FU6TH) as a function of 11-NOV - 图5. Thus we can compute its derivative with respect to 11-NOV - 图6: 11-NOV - 图7%20%3D%20y’(u)%7C%7Bu%20%3D%20u(x)%7D%20%5Ccdot%20u’(x)#card=math&code=y%27%28x%29%20%3D%20y%27%28u%29%7C%7Bu%20%3D%20u%28x%29%7D%20%5Ccdot%20u%27%28x%29&id=EVi9f)

    Example: Find the derivative of 11-NOV - 图8%20%3D%20x%20%5B(2x%2B3)%5E3%5D%5E%7B-1%7D%20%3D%20x%20%5Ccdot%20(2x%2B3)%5E%7B-3%7D#card=math&code=h%28x%29%20%3D%20x%20%5B%282x%2B3%29%5E3%5D%5E%7B-1%7D%20%3D%20x%20%5Ccdot%20%282x%2B3%29%5E%7B-3%7D&id=YSJHk)

    Solution: Write 11-NOV - 图9%5E%7B-3%7D%20%3D%20u%5E%7B-3%7D#card=math&code=%282x%2B3%29%5E%7B-3%7D%20%3D%20u%5E%7B-3%7D&id=WjOBS) with 11-NOV - 图10.

    11-NOV - 图11%3Dx%5E%7B-3%7D#card=math&code=f%28x%29%3Dx%5E%7B-3%7D&id=oR6hp), 11-NOV - 图12%3D2x%2B3#card=math&code=g%28x%29%3D2x%2B3&id=BAnjn), so 11-NOV - 图13)%3D(2x%2B3)%5E%7B-3%7D#card=math&code=f%28g%28x%29%29%3D%282x%2B3%29%5E%7B-3%7D&id=ofWEH) .

    Now apply the chain rule:

    11-NOV - 图14%3D%20-3%20x%5E%7B-4%7D#card=math&code=f%27%28x%29%3D%20-3%20x%5E%7B-4%7D&id=Jrzyp) , then evaluating at 11-NOV - 图15#card=math&code=g%28x%29&id=z9tbn): 11-NOV - 图16%5E%7B-4%7D#card=math&code=-3%282x%2B3%29%5E%7B-4%7D&id=WWfkM) ;

    11-NOV - 图17%20%3D%202#card=math&code=g%27%28x%29%20%3D%202&id=obpt9).

    Conclusion: 11-NOV - 图18%20%3D(2x%2B3)%5E%7B-3%7D%20%2B%20x%20(-6)(2x%2B3)%5E%7B-4%7D%20%3D%20%5Cfrac%7B-4x%2B3%7D%7B(2x%2B3)%5E4%7D#card=math&code=h%27%28x%29%20%3D%282x%2B3%29%5E%7B-3%7D%20%2B%20x%20%28-6%29%282x%2B3%29%5E%7B-4%7D%20%3D%20%5Cfrac%7B-4x%2B3%7D%7B%282x%2B3%29%5E4%7D&id=CtewY).


    Now we turn to computation of indefinite integrals. Start with an

    Example: Find the anti-derivative (indefinite integral) of 11-NOV - 图19%5E3%20(2x)#card=math&code=%28x%5E2-3%29%5E3%20%282x%29&id=BletD).

    Solution: 11-NOV - 图20%5E3%20(2x)%20dx#card=math&code=%5Cint%20%28x%5E2-3%29%5E3%20%282x%29%20dx&id=PTFgX) , to compute it, we can use Newton’s binomial expansion for 11-NOV - 图21,
    where 11-NOV - 图22!%7D%20%3D%20%5Cbinom%7Bn%7D%7Bn-k%7D#card=math&code=%5Cbinom%7Bn%7D%7Bk%7D%20%3D%20%5Cfrac%7Bn%21%7D%7Bk%21%20%28n-k%29%21%7D%20%3D%20%5Cbinom%7Bn%7D%7Bn-k%7D&id=S2ANY) with 11-NOV - 图23 integers, and 11-NOV - 图24.

    11-NOV - 图25%20%2B%203x%5E2%20(-3)%5E2%20%2B%20(-3)%5E3)(2x)%20%3D%202x%5E7-18x%5E4%2B54x%5E2-54x#card=math&code=%28x%5E6%2B3x%5E4%28-3%29%20%2B%203x%5E2%20%28-3%29%5E2%20%2B%20%28-3%29%5E3%29%282x%29%20%3D%202x%5E7-18x%5E4%2B54x%5E2-54x&id=DxlCg) , and

    11-NOV - 图26%20dx#card=math&code=%5Cint%20%282x%5E7-18x%5E4%2B54x%5E2-54x%29%20dx&id=v6XR6) = 11-NOV - 图27x%5E8%20-%20(18%2F5)x%5E5%20%2B18%20x%5E3%20-%2027%20x%5E2%20%2BC#card=math&code=%281%2F8%29x%5E8%20-%20%2818%2F5%29x%5E5%20%2B18%20x%5E3%20-%2027%20x%5E2%20%2BC&id=qhhK5)

    We now apply the reverse process of the “chain rule”, namely, substitution, to compute this indefinite integral.

    The derviative of 11-NOV - 图28 is 11-NOV - 图29#card=math&code=%282x%29&id=ntAHz) : 11-NOV - 图30%20%3D%20(2x)%20dx#card=math&code=d%28x%5E2-%203%29%20%3D%20%282x%29%20dx&id=Qv7cs)

    11-NOV - 图31%5E3%20(2x)%20dx%20%3D%20%5Cint%20(x%5E2-3)%5E3%20d(x%5E2)%20%3D%20%5Cint%20(x%5E2-3)%5E3%20d(x%5E2-3)#card=math&code=%5Cint%20%28x%5E2-3%29%5E3%20%282x%29%20dx%20%3D%20%5Cint%20%28x%5E2-3%29%5E3%20d%28x%5E2%29%20%3D%20%5Cint%20%28x%5E2-3%29%5E3%20d%28x%5E2-3%29&id=KLFpL) Now we let 11-NOV - 图32

    11-NOV - 图33%5E3%20(2x)%20dx%20%3D%20%5Cint%20(x%5E2-3)%5E3%20d(x%5E2-3)%20%3D%20%5Cint%20t%5E3%20dt%20%3D%20t%5E4%2F4%2BC%20%3D%20(1%2F4)(x%5E2-3)%5E4%20%2BC#card=math&code=%5Cint%20%28x%5E2-3%29%5E3%20%282x%29%20dx%20%3D%20%5Cint%20%28x%5E2-3%29%5E3%20d%28x%5E2-3%29%20%3D%20%5Cint%20t%5E3%20dt%20%3D%20t%5E4%2F4%2BC%20%3D%20%281%2F4%29%28x%5E2-3%29%5E4%20%2BC&id=tH6Fx)

    Remark: if one uses 11-NOV - 图34#card=math&code=2xdx%3Dd%28x%5E2%29&id=NZeof) , then we let 11-NOV - 图35: 11-NOV - 图36%5E3%20du#card=math&code=%5Cint%20%28u-3%29%5E3%20du&id=bcs8c). Now either using 11-NOV - 图37#card=math&code=du%20%3D%20d%28u-3%29&id=sDklC) or expanding 11-NOV - 图38%5E3#card=math&code=%28u-3%29%5E3&id=elX9S)


    Example 5.30

    (6x)dx = 3 (2x)dx = 3d(x^2) . If we let 11-NOV - 图39, then 11-NOV - 图40%5E4%20%3D%20(3t%2B4)%5E4#card=math&code=%283x%5E2%2B4%29%5E4%20%3D%20%283t%2B4%29%5E4&id=nQZmc) we still have “3dt”

    11-NOV - 图41%20%3Dd%20(3t%2B4)#card=math&code=3dt%20%3D%20d%283t%29%20%3Dd%20%283t%2B4%29&id=gs0Hy)

    11-NOV - 图42 Now we let 11-NOV - 图43 , then 11-NOV - 图44, and

    11-NOV - 图45%2BC%20%3D%20(1%2F5)(3x%5E2%2B4)%5E5%2BC#card=math&code=%5Cint%20y%5E4%20dy%20%3D%20%28y%5E5%2F5%29%2BC%20%3D%20%281%2F5%29%283x%5E2%2B4%29%5E5%2BC&id=T8Qbz)


    Exercise 5.25 (below Example 5.30)

    11-NOV - 图46%5E2%20(3x%5E2)dx#card=math&code=%5Cint%20%28x%5E3-3%29%5E2%20%283x%5E2%29dx&id=asoC8) . The key is to recognise that 11-NOV - 图47%20%3D%20d(x%5E3-3)#card=math&code=3x%5E2%20dx%20%3D%20d%28x%5E3%29%20%3D%20d%28x%5E3-3%29&id=Na7eb) . Then we let 11-NOV - 图48.

    we get 11-NOV - 图49t%5E3%20%2B%20C%20%3D%20(1%2F3)(x%5E3-3)%5E3%20%2BC#card=math&code=%5Cint%20t%5E2%20dt%20%3D%20%281%2F3%29t%5E3%20%2B%20C%20%3D%20%281%2F3%29%28x%5E3-3%29%5E3%20%2BC&id=IAE07)


    Example 5.31 (one has to adjust the constant factor here)

    11-NOV - 图50%5Cint%20(z%5E2-5)%5E%7B1%2F2%7D%202zdz#card=math&code=%281%2F2%29%5Cint%20%28z%5E2-5%29%5E%7B1%2F2%7D%202zdz&id=W7fPS) and we see that 11-NOV - 图51#card=math&code=2zdz%20%3D%20d%28z%5E2-5%29&id=omixq) . So the original integral is

    11-NOV - 图52%20%5Cint%20(z%5E2-5)%5E%7B1%2F2%7D%20d%20(z%5E2-5)%20%3D%20(1%2F2)%20%2F(3%2F2)%20(z%5E2-5)%5E%7B3%2F2%7D%2BC%20%3D%20(1%2F3)(z%5E2-5)%5E%7B3%2F2%7D%2BC#card=math&code=%281%2F2%29%20%5Cint%20%28z%5E2-5%29%5E%7B1%2F2%7D%20d%20%28z%5E2-5%29%20%3D%20%281%2F2%29%20%2F%283%2F2%29%20%28z%5E2-5%29%5E%7B3%2F2%7D%2BC%20%3D%20%281%2F3%29%28z%5E2-5%29%5E%7B3%2F2%7D%2BC&id=rsXRB)


    In the coming week we continue to learn how to compute indefinite integrals. We shall learn two major techniques: one is integration by parts, the other is the intergration of rational functions.

    (1) We have learned some basic integrals: integrals of basic elementary funcitons ( five types, powers, exp, logarithm, trigonometric, and inverse of trigonometric functions) .

    In what follows we will learn the below methods

    (2) The technique of substitution.

    (3) integration by parts and

    (4) intergration of rational functions.