Topic today: Limit computation (a practical lesson)

    1. More (non-)existent criteria for limit.

    2. Continuity

    3. Limit computation (from basic building blocks)

    4. Review: Theorem 2.2 relating one-sided and two-sided limits. Using this thm to confirm the (non-)existence of a limit.
      Two more general criteria guaranteeing the existence of limit:
      (a) monotonic and bounded;
      (b) the squeezing principle.

    Let us explain in detail.

    (a) increasing with an upper bound; decreasing with a lower bound.

    Increasing with an upper bound: 30-SEP - 图1 as 30-SEP - 图2 increasing, 30-SEP - 图3 also increases.

    What is a upper bound? It is a (finite) constant (say 30-SEP - 图4), such that the thing we are considering (here is the value of 30-SEP - 图5 ) is always less than (or equal to ) 30-SEP - 图6. (in the example 30-SEP - 图7, we can take 30-SEP - 图8).

    Symbolically, 30-SEP - 图9%20%3D%200#card=math&code=%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%281-e%5E%7B-x%7D%29%20%3D%200).

    Remark: the upper bound is of course not unique. (any number bigger than 30-SEP - 图10 is still an upper bound).

    The criterion of “decreasing with a lower bound” is totally symmetric.

    30-SEP - 图11 decreasing with a lower bound 30-SEP - 图12. 30-SEP - 图13.

    30-SEP - 图14 (30-SEP - 图15) is also decreasing with a lower bound 30-SEP - 图16. 30-SEP - 图17%20%3D%200#card=math&code=%5Clim_%7Bx%5Cto%20%5Cinfty%20%7D%281%2Fx%29%20%3D%200).

    There are examples 30-SEP - 图18%20%3D%20L%20%3C%20%5Cinfty#card=math&code=%5Clim_%7Bx%20%5Cto%20x_0%7D%20f%28x%29%20%3D%20L%20%3C%20%5Cinfty) where 30-SEP - 图19.

    (b) the “squeezing” principle. (The squeeze theorem 2.7)

    The typical application of the squeeze theorem is: 30-SEP - 图20.

    (See Equation (2.18) on p. 181 of the OpenStax Calculus book.)

    Application of the criterion (a): Explanation (not strict proof !) of 30-SEP - 图21 when 30-SEP - 图22.

    (1) Trivial if 30-SEP - 图23 (see Theorem 2.4, Equation (2.15)); So suppose 30-SEP - 图24.

    (2) if 30-SEP - 图25, then 30-SEP - 图26 decreases as 30-SEP - 图27, with lower bound 30-SEP - 图28.

    (3) if 30-SEP - 图29, consider the two sequences 30-SEP - 图30 and 30-SEP - 图31.

    30-SEP - 图32%5En#card=math&code=q%5E%7B2n%7D%20%3D%20%28q%5E2%29%5En) just as discussed in (2); 30-SEP - 图33, increasing with upper bound 30-SEP - 图34.

    We can boldly guess that if 30-SEP - 图35 then 30-SEP - 图36 as 30-SEP - 图37.

    1. Notion of continuous functions
      In particular, three types of discontinuities:
      (a) removable;
      (b) jump;
      (c) infinite.

    (Enhanced) Theorem: Let 30-SEP - 图38 be an elementary function (that is, 30-SEP - 图39 of basic elementary functions, namely, polynomials, exponential, logarithmic, trigonometric, and inverse of trigonometric functions) defined over 30-SEP - 图40%20%5Ccup%20%5Ccdots%20%5Ccup%20(an%2C%20b_n)#card=math&code=I%20%3D%28a_1%2C%20b_1%29%20%5Ccup%20%5Ccdots%20%5Ccup%20%28a_n%2C%20b_n%29), where ![](https://g.yuque.com/gr/latex?a_i%20%3C%20b_i%20%3C%20a%7Bi%2B1%7D%3C%20b%7Bi%2B1%7D%2C%20i%3D1%2C%202%2C%20%5Cldots%2C%20n-1#card=math&code=a_i%20%3C%20b_i%20%3C%20a%7Bi%2B1%7D%3C%20b_%7Bi%2B1%7D%2C%20i%3D1%2C%202%2C%20%5Cldots%2C%20n-1).

    Conclusion: Then 30-SEP - 图41 is continous over any open interval 30-SEP - 图42#card=math&code=%28a_i%2C%20b_i%29).

    (See Theorem 2.8 in the OpenStax Calculus book)

    What about 30-SEP - 图43%3D%5Csin(x)%2Fx#card=math&code=g%28x%29%3D%5Csin%28x%29%2Fx)? What is the value of 30-SEP - 图44#card=math&code=g%280%29)? (Answer: 30-SEP - 图45 is not inside the domain of 30-SEP - 图46#card=math&code=g%28x%29).)

    1. Application: Limit computation!

    Using Theorem 2.4, 2.5 (limit laws) + the above enhanced version of Theorem 2.8, 2.10 and Theorem 2.9, we can compute a lot of limits.

    Examples:

    (1). 30-SEP - 图47#card=math&code=%5Ccos%20%28x%20%20-%20%5Cpi%2F2%29): we can regard it as the composition 30-SEP - 图48%2C%20u%20%3D%20u(x)%3Dx-%20%5Cpi%2F2#card=math&code=y%3D%5Ccos%20%28u%29%2C%20u%20%3D%20u%28x%29%3Dx-%20%5Cpi%2F2). At 30-SEP - 图49, both 30-SEP - 图50#card=math&code=y%3D%5Ccos%28u%29) and 30-SEP - 图51%3Dx-%5Cpi%2F2#card=math&code=u%28x%29%3Dx-%5Cpi%2F2) are continuous. So just insert 30-SEP - 图52 into the expression: 30-SEP - 图53%3D0#card=math&code=u%28%5Cpi%2F2%29%3D0). and 30-SEP - 图54%20%3D%20%5Ccos(0)%20%3D%201#card=math&code=y%280%29%20%3D%20%5Ccos%280%29%20%3D%201) . So 30-SEP - 图55%3D1#card=math&code=%5Clim_%7Bx%5Cto%20%5Cpi%2F2%7D%20%5Ccos%28x-%5Cpi%2F2%29%3D1).

    (2). 30-SEP - 图56%2F(x%5E2%2Bx-6)#card=math&code=%5Clim_%7Bx%5Cto%202%7D%20%28x%5E2-4%29%2F%28x%5E2%2Bx-6%29). When 30-SEP - 图57, both 30-SEP - 图58 and 30-SEP - 图59 are zero.

    We observe that 30-SEP - 图60%3D(x-2)(x%2B2)#card=math&code=%28x%5E2-4%29%3D%28x-2%29%28x%2B2%29) , 30-SEP - 图61%3D(x-2)(x%2B3)#card=math&code=%28x%5E2%2Bx-6%29%3D%28x-2%29%28x%2B3%29).

    30-SEP - 图62(x%2B2)%7D%7B(x-2)(x%2B3)%7D%20%3D%20%5Clim%7Bx%5Cto%202%7D%20%5Cfrac%7Bx%2B2%7D%7Bx%2B3%7D%20%3D%20%5Cfrac%7B2%2B2%7D%7B2%2B3%7D%3D4%2F5#card=math&code=%5Clim%7Bx%20%5Cto%202%7D%20%5Cfrac%7B%28x-2%29%28x%2B2%29%7D%7B%28x-2%29%28x%2B3%29%7D%20%3D%20%5Clim_%7Bx%5Cto%202%7D%20%5Cfrac%7Bx%2B2%7D%7Bx%2B3%7D%20%3D%20%5Cfrac%7B2%2B2%7D%7B2%2B3%7D%3D4%2F5).