There is a series of tricks to prove some inequalities, using geometric method about area comparison.

    16-DEC - 图1: We interpret 16-DEC - 图2 and 16-DEC - 图3 as areas of some regions. These areas should be easy to compare.

    A toy example: consider a square inscribe on a unit circle. The area of the unit disc is 16-DEC - 图4, and the area of this square is 16-DEC - 图5. Consequently, 16-DEC - 图6.

    Another example: Theorem 6.1. By observation, 16-DEC - 图7%20%5C%2C%20dx%20-%20%5Cint_a%5Eb%20g(x)%20%5C%2C%20dx#card=math&code=A%20%3D%20%5Cint_a%5Eb%20f%20%28x%29%20%5C%2C%20dx%20-%20%5Cint_a%5Eb%20g%28x%29%20%5C%2C%20dx).

    Yet another example: 16-DEC - 图8%5E4%7D%7B1%2Bx%5E2%7D%20%3D%20%5Cfrac%7B22%7D%7B7%7D%20-%20%5Cpi%20%3E0#card=math&code=%5Cdisplaystyle%20%5Cint_0%5E1%20%5Cfrac%7Bx%5E4%281-x%29%5E4%7D%7B1%2Bx%5E2%7D%20%3D%20%5Cfrac%7B22%7D%7B7%7D%20-%20%5Cpi%20%3E0).

    16-DEC - 图9%3D0%2C%5Cquad%20%20f(x)%20%3D%20%5Cfrac%7Bx%5E4(1-x)%5E4%7D%7B1%2Bx%5E2%7D%20%5Cgeq%200#card=math&code=g%28x%29%3D0%2C%5Cquad%20%20f%28x%29%20%3D%20%5Cfrac%7Bx%5E4%281-x%29%5E4%7D%7B1%2Bx%5E2%7D%20%5Cgeq%200). and 16-DEC - 图10%3D0#card=math&code=f%28x%29%3D0) if and only if 16-DEC - 图11.

    16-DEC - 图12%20%5C%2C%20dx%20%3E0#card=math&code=%5Cint_0%5E1%20f%28x%29%20%5C%2C%20dx%20%3E0). Conclusion: 16-DEC - 图13.


    X-type region: bounded left and right by two vertical lines: 16-DEC - 图14, bounded up and below by two graphs 16-DEC - 图15%2C%20y%3Dg(x)#card=math&code=y%3Df%28x%29%2C%20y%3Dg%28x%29).

    Y-type region: bounded up and below by two horizontal lines: 16-DEC - 图16, bounded left and right by two graphs: 16-DEC - 图17%2C%20x%20%3D%20v(y)#card=math&code=x%20%3D%20u%28y%29%2C%20x%20%3D%20v%28y%29).


    Arc length

    When considering definite integrals, we require that 16-DEC - 图18 must be continuous over 16-DEC - 图19.

    Now we require that 16-DEC - 图20 is differentiable over 16-DEC - 图21, and moreover, its derivative 16-DEC - 图22 is continuous on 16-DEC - 图23 ——> such a function is called smooth.

    the length of a small arc over a sub-interval (sub-interval is obtained by partion of the total interval 16-DEC - 图24) can be approximately expressed as the length of the line segment joining 16-DEC - 图25)#card=math&code=%28x%7Bi-1%7D%2C%20f%28x%7Bi-1%7D%29%29) and 16-DEC - 图26)#card=math&code=%28xi%2C%20f%28x_i%29%29). The length of this line segment can be computed via the Pythagorean theorm. This length is approximately 16-DEC - 图27)%5E2%7D%20%5CDelta%20x#card=math&code=%5Csqrt%7B1%2B%28f%27%28x_i%5E%2A%29%29%5E2%7D%20%5CDelta%20x) for some 16-DEC - 图28 lie between ![](https://g.yuque.com/gr/latex?(x%7Bi-1%7D%2C%20xi)#card=math&code=%28x%7Bi-1%7D%2C%20xi%29), by virtue of the mean value theorem. Now we sum them up, and get a Riemann-sum: ![](https://g.yuque.com/gr/latex?%5Csum%7Bi%3D1%7D%5En%20%5Csqrt%7B1%2B(f’(xi%5E*))%5E2%7D%20%5CDelta%20x#card=math&code=%5Csum%7Bi%3D1%7D%5En%20%5Csqrt%7B1%2B%28f%27%28x_i%5E%2A%29%29%5E2%7D%20%5CDelta%20x).

    Remark 1. A function 16-DEC - 图29 being smooth in this textbook means that 16-DEC - 图30 is differentiable over 16-DEC - 图31 and 16-DEC - 图32 is continuous over 16-DEC - 图33. In other popular literatures, this may be called that 16-DEC - 图34 is a 16-DEC - 图35 function, or 16-DEC - 图36. 16-DEC - 图37 means 16-DEC - 图38 is continuous.

    Remark 2. Arc length, area, as well as volume, these two are geometric information (or amount/value), these amounts will not change even if we move or rotate the coordinating system.


    Surface area of a revolution object 16-DEC - 图39%5Csqrt%7B1%2B(f’(x))%5E2%7D)%20dx#card=math&code=%5Cint_a%5Eb%20%282%5Cpi%20f%28x%29%5Csqrt%7B1%2B%28f%27%28x%29%29%5E2%7D%29%20dx)

    Example 6.21 16-DEC - 图40, 16-DEC - 图41%3D%5Csqrt%7Bx%7D#card=math&code=f%28x%29%3D%5Csqrt%7Bx%7D). 16-DEC - 图42%20%3D%20%5Cfrac%7B1%7D%7B2%5Csqrt%7Bx%7D%7D#card=math&code=f%27%28x%29%20%3D%20%5Cfrac%7B1%7D%7B2%5Csqrt%7Bx%7D%7D).

    Another example: Gabriel’s horn: 16-DEC - 图43%3D1%2Fx#card=math&code=a%3D1%2C%20b%20%3D%5Cinfty%2C%20f%28x%29%3D1%2Fx). 16-DEC - 图44%3D-1%2Fx%5E2#card=math&code=f%27%28x%29%3D-1%2Fx%5E2).

    Its surface is 16-DEC - 图45%5Cfrac%7B1%7D%7Bx%7D%20%5Csqrt%7B1%2B%5Cfrac%7B1%7D%7Bx%5E4%7D%7D%20dx#card=math&code=%5Cint_1%5E%7B%5Cinfty%7D%20%282%5Cpi%29%5Cfrac%7B1%7D%7Bx%7D%20%5Csqrt%7B1%2B%5Cfrac%7B1%7D%7Bx%5E4%7D%7D%20dx).

    It can be shown that an anti-derivative is 16-DEC - 图46%20-%20%5Cln%20(%5Csqrt%7B1%2B%5Cfrac%7B1%7D%7Bx%5E4%7D%7D-1)%20%5Cbigg)#card=math&code=%5Cfrac%7B1%7D%7B4%7D%5Cbigg%28-2%5Csqrt%7B1%2B%5Cfrac%7B1%7D%7Bx%5E4%7D%7D%2B%20%5Cln%20%28%5Csqrt%7B1%2B%5Cfrac%7B1%7D%7Bx%5E4%7D%7D%2B1%29%20-%20%5Cln%20%28%5Csqrt%7B1%2B%5Cfrac%7B1%7D%7Bx%5E4%7D%7D-1%29%20%5Cbigg%29). Since 16-DEC - 图47%20%3D%20%2B%5Cinfty#card=math&code=%5Clim_%7Bx%5Cto%20%5Cinfty%7D%20-%5Cln%20%28%5Csqrt%7B1%2B%5Cfrac%7B1%7D%7Bx%5E4%7D%7D-1%29%20%3D%20%2B%5Cinfty), we deduce that the surface area is infinite.