- 困难
- 中等
- 简单
题目描述
给定长度分别为 m 和 n 的两个数组,其元素由 0-9 构成,表示两个自然数各位上的数字。现在从这两个数组中选出 k (k <= m + n) 个数字拼接成一个新的数,要求从同一个数组中取出的数字保持其在原数组中的相对顺序。来源,leetcode 每日一题 321. 拼接最大数字
求满足该条件的最大数。结果返回一个表示该最大数的长度为 k 的数组。
说明: 请尽可能地优化你算法的时间和空间复杂度。
示例:
输入:nums1 = [3, 4, 6, 5]nums2 = [9, 1, 2, 5, 8, 3]k = 5输出:[9, 8, 6, 5, 3]输入:nums1 = [6, 7]nums2 = [6, 0, 4]k = 5输出:[6, 7, 6, 0, 4]输入:nums1 = [3, 9]nums2 = [8, 9]k = 3输出:[9, 8, 9]
解题思路
相关题目:
- 316. 去除重复字母(困难)
- 321. 拼接最大数(困难)
- 402. 移掉 K 位数字(中等)
- 1081. 不同字符的最小子序列(中等)








```cpp 给你一个仅包含小写字母的字符串,请你去除字符串中重复的字母,使得每个字母只出现一次。 需保证返回结果的字典序最小(要求不能打乱其他字符的相对位置)。
示例 1:
输入: “bcabc” 输出: “abc” 示例 2:
输入: “cbacdcbc” 输出: “acdb”
<a name="ur5Ae"></a>## 本题思路<a name="xZQIe"></a># 代码```cppclass Solution {public:vector<int> maxNumber(vector<int>& nums1, vector<int>& nums2, int k) {int m = nums1.size(), n = nums2.size();vector<int> maxSubsequence(k, 0);int start = max(0, k - n), end = min(k, m);for (int i = start; i <= end; i++) {vector<int> subsequence1(MaxSubsequence(nums1, i));vector<int> subsequence2(MaxSubsequence(nums2, k - i));vector<int> curMaxSubsequence(merge(subsequence1, subsequence2));if (compare(curMaxSubsequence, 0, maxSubsequence, 0) > 0) {maxSubsequence.swap(curMaxSubsequence);}}return maxSubsequence;}vector<int> MaxSubsequence(vector<int>& nums, int k) {int length = nums.size();vector<int> stack(k, 0);int top = -1;int remain = length - k; // 需要抛弃的数量for (int i = 0; i < length; i++) {int num = nums[i];while (top >= 0 && stack[top] < num && remain > 0) { // 如果栈里有元素,且栈顶的元素小于当前元素,且还有需要抛弃的元素,则栈顶元素-1, 且需要抛弃的元素数量减一top--;remain--;}if (top < k - 1) { // 如果 栈未满,则直接入栈stack[++top] = num;} else {remain--; // 否则需要抛弃的元素数量减一}}return stack;}vector<int> merge(vector<int>& subsequence1, vector<int>& subsequence2) {int x = subsequence1.size(), y = subsequence2.size();if (x == 0) {return subsequence2;}if (y == 0) {return subsequence1;}int mergeLength = x + y;vector<int> merged(mergeLength);int index1 = 0, index2 = 0;for (int i = 0; i < mergeLength; i++) {if (compare(subsequence1, index1, subsequence2, index2) > 0) {merged[i] = subsequence1[index1++];} else {merged[i] = subsequence2[index2++];}}return merged;}int compare(vector<int>& subsequence1, int index1, vector<int>& subsequence2, int index2) {int x = subsequence1.size(), y = subsequence2.size();while (index1 < x && index2 < y) {int difference = subsequence1[index1] - subsequence2[index2];if (difference != 0) {return difference;}index1++;index2++;}return (x - index1) - (y - index2);}};
总结

