- 困难
- 中等
- 简单
题目描述
给定长度分别为 m 和 n 的两个数组,其元素由 0-9 构成,表示两个自然数各位上的数字。现在从这两个数组中选出 k (k <= m + n) 个数字拼接成一个新的数,要求从同一个数组中取出的数字保持其在原数组中的相对顺序。来源,leetcode 每日一题 321. 拼接最大数字
求满足该条件的最大数。结果返回一个表示该最大数的长度为 k
的数组。
说明: 请尽可能地优化你算法的时间和空间复杂度。
示例:
输入:
nums1 = [3, 4, 6, 5]
nums2 = [9, 1, 2, 5, 8, 3]
k = 5
输出:
[9, 8, 6, 5, 3]
输入:
nums1 = [6, 7]
nums2 = [6, 0, 4]
k = 5
输出:
[6, 7, 6, 0, 4]
输入:
nums1 = [3, 9]
nums2 = [8, 9]
k = 3
输出:
[9, 8, 9]
解题思路
相关题目:
- 316. 去除重复字母(困难)
- 321. 拼接最大数(困难)
- 402. 移掉 K 位数字(中等)
- 1081. 不同字符的最小子序列(中等)
```cpp 给你一个仅包含小写字母的字符串,请你去除字符串中重复的字母,使得每个字母只出现一次。 需保证返回结果的字典序最小(要求不能打乱其他字符的相对位置)。
示例 1:
输入: “bcabc” 输出: “abc” 示例 2:
输入: “cbacdcbc” 输出: “acdb”

<a name="ur5Ae"></a>
## 本题思路

<a name="xZQIe"></a>
# 代码
```cpp
class Solution {
public:
vector<int> maxNumber(vector<int>& nums1, vector<int>& nums2, int k) {
int m = nums1.size(), n = nums2.size();
vector<int> maxSubsequence(k, 0);
int start = max(0, k - n), end = min(k, m);
for (int i = start; i <= end; i++) {
vector<int> subsequence1(MaxSubsequence(nums1, i));
vector<int> subsequence2(MaxSubsequence(nums2, k - i));
vector<int> curMaxSubsequence(merge(subsequence1, subsequence2));
if (compare(curMaxSubsequence, 0, maxSubsequence, 0) > 0) {
maxSubsequence.swap(curMaxSubsequence);
}
}
return maxSubsequence;
}
vector<int> MaxSubsequence(vector<int>& nums, int k) {
int length = nums.size();
vector<int> stack(k, 0);
int top = -1;
int remain = length - k; // 需要抛弃的数量
for (int i = 0; i < length; i++) {
int num = nums[i];
while (top >= 0 && stack[top] < num && remain > 0) { // 如果栈里有元素,且栈顶的元素小于当前元素,且还有需要抛弃的元素,则栈顶元素-1, 且需要抛弃的元素数量减一
top--;
remain--;
}
if (top < k - 1) { // 如果 栈未满,则直接入栈
stack[++top] = num;
} else {
remain--; // 否则需要抛弃的元素数量减一
}
}
return stack;
}
vector<int> merge(vector<int>& subsequence1, vector<int>& subsequence2) {
int x = subsequence1.size(), y = subsequence2.size();
if (x == 0) {
return subsequence2;
}
if (y == 0) {
return subsequence1;
}
int mergeLength = x + y;
vector<int> merged(mergeLength);
int index1 = 0, index2 = 0;
for (int i = 0; i < mergeLength; i++) {
if (compare(subsequence1, index1, subsequence2, index2) > 0) {
merged[i] = subsequence1[index1++];
} else {
merged[i] = subsequence2[index2++];
}
}
return merged;
}
int compare(vector<int>& subsequence1, int index1, vector<int>& subsequence2, int index2) {
int x = subsequence1.size(), y = subsequence2.size();
while (index1 < x && index2 < y) {
int difference = subsequence1[index1] - subsequence2[index2];
if (difference != 0) {
return difference;
}
index1++;
index2++;
}
return (x - index1) - (y - index2);
}
};