本文主要内容
- 从网站计数器实现中一步步引出 CAS 操作
- 介绍 java 中的 CAS 及 CAS 可能存在的问题
- 悲观锁和乐观锁的一些介绍及数据库乐观锁的一个常见示例
- 使用 java 中的原子操作实现网站计数器功能
我们需要解决的问题
需求:我们开发了一个网站,需要对访问量进行统计,用户每次发一次请求,访问量+1,如何实现呢?
下面我们来模仿有 100 个人同时访问,并且每个人对咱们的网站发起 10 次请求,最后总访问次数应该是 1000 次。实现访问如下。方式 1
代码如下:
package com.itsoku.chat20;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;
/
微信公众号:程序员路人
/
public class Demo1 {
//访问次数
static int** count = 0;
//模拟访问一次<br /> **public** **static** **void** **request**() **throws** InterruptedException {<br /> //模拟耗时5毫秒<br /> TimeUnit.MILLISECONDS.sleep(5);<br /> count++;<br /> }
**public** **static** **void** **main**(String[] args) **throws** InterruptedException {<br /> **long** starTime = System.currentTimeMillis();<br /> **int** threadSize = 100;<br /> CountDownLatch countDownLatch = **new** CountDownLatch(threadSize);<br /> **for** (**int** i = 0; i < threadSize; i++) {<br /> Thread thread = **new** Thread(() -> {<br /> **try** {<br /> **for** (**int** j = 0; j < 10; j++) {<br /> request();<br /> }<br /> } **catch** (InterruptedException e) {<br /> e.printStackTrace();<br /> } **finally** {<br /> countDownLatch.countDown();<br /> }<br /> });<br /> thread.start();<br /> }
countDownLatch.await();<br /> **long** endTime = System.currentTimeMillis();<br /> System.out.println(Thread.currentThread().getName() + ",耗时:" + (endTime - starTime) + ",count=" + count);<br /> }<br />}
输出:
main,耗时:138,count=975
代码中的 count 用来记录总访问次数,request()方法表示访问一次,内部休眠 5 毫秒模拟内部耗时,request 方法内部对 count++操作。程序最终耗时 1 秒多,执行还是挺快的,但是 count 和我们期望的结果不一致,我们期望的是 1000,实际输出的是 973(每次运行结果可能都不一样)。
分析一下问题出在哪呢?
代码中采用的是多线程的方式来操作 count,count++会有线程安全问题,count++操作实际上是由以下三步操作完成的:
- 获取 count 的值,记做 A:A=count
- 将 A 的值+1,得到 B:B = A+1
- 让 B 赋值给 count:count = B
如果有 A、B 两个线程同时执行 count++,他们同时执行到上面步骤的第 1 步,得到的 count 是一样的,3 步操作完成之后,count 只会+1,导致 count 只加了一次,从而导致结果不准确。
那么我们应该怎么做的呢?
对 count++操作的时候,我们让多个线程排队处理,多个线程同时到达 request()方法的时候,只能允许一个线程可以进去操作,其他的线程在外面候着,等里面的处理完毕出来之后,外面等着的再进去一个,这样操作 count++就是排队进行的,结果一定是正确的。
我们前面学了 synchronized、ReentrantLock 可以对资源加锁,保证并发的正确性,多线程情况下可以保证被锁的资源被串行访问,那么我们用 synchronized 来实现一下。
方式 2:使用 synchronized 实现
代码如下:
package com.itsoku.chat20;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.ReentrantLock;
/
微信公众号:程序员路人
/
public class Demo2 {
//访问次数
static int** count = 0;
//模拟访问一次<br /> **public** **static** **synchronized** **void** **request**() **throws** InterruptedException {<br /> //模拟耗时5毫秒<br /> TimeUnit.MILLISECONDS.sleep(5);<br /> count++;<br /> }
**public** **static** **void** **main**(String[] args) **throws** InterruptedException {<br /> **long** starTime = System.currentTimeMillis();<br /> **int** threadSize = 100;<br /> CountDownLatch countDownLatch = **new** CountDownLatch(threadSize);<br /> **for** (**int** i = 0; i < threadSize; i++) {<br /> Thread thread = **new** Thread(() -> {<br /> **try** {<br /> **for** (**int** j = 0; j < 10; j++) {<br /> request();<br /> }<br /> } **catch** (InterruptedException e) {<br /> e.printStackTrace();<br /> } **finally** {<br /> countDownLatch.countDown();<br /> }<br /> });<br /> thread.start();<br /> }
countDownLatch.await();<br /> **long** endTime = System.currentTimeMillis();<br /> System.out.println(Thread.currentThread().getName() + ",耗时:" + (endTime - starTime) + ",count=" + count);<br /> }<br />}
输出:
main,耗时:5563,count=1000
程序中 request 方法使用 synchronized 关键字,保证了并发情况下,request 方法同一时刻只允许一个线程访问,request 加锁了相当于串行执行了,count 的结果和我们预期的结果一致,只是耗时比较长,5 秒多。
方式 3
我们在看一下 count++操作,count++操作实际上是被拆分为 3 步骤执行:
1. 获取count的值,记做A:A=count
2. 将A的值+1,得到B:B = A+1
3. 让B赋值给count:count = B
方式 2 中我们通过加锁的方式让上面 3 步骤同时只能被一个线程操作,从而保证结果的正确性。
我们是否可以只在第 3 步加锁,减少加锁的范围,对第 3 步做以下处理:
获取锁
第三步获取一下count最新的值,记做LV
判断LV是否等于A,如果相等,则将B的值赋给count,并返回true,否者返回false
释放锁
如果我们发现第 3 步返回的是 false,我们就再次去获取 count,将 count 赋值给 A,对 A+1 赋值给 B,然后再将 A、B 的值带入到上面的过程中执行,直到上面的结果返回 true 为止。
我们用代码来实现,如下:
package com.itsoku.chat20;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;
/
微信公众号:程序员路人
/
public class Demo3 {
//访问次数
volatile static int** count = 0;
//模拟访问一次<br /> **public** **static** **void** **request**() **throws** InterruptedException {<br /> //模拟耗时5毫秒<br /> TimeUnit.MILLISECONDS.sleep(5);<br /> **int** expectCount;<br /> **do** {<br /> expectCount = getCount();<br /> } **while** (!compareAndSwap(expectCount, expectCount + 1));<br /> }
/**<br /> * 获取count当前的值<br /> *<br /> * **@return**<br /> */<br /> **public** **static** **int** **getCount**() {<br /> **return** count;<br /> }
/**<br /> * **@param** expectCount 期望count的值<br /> * **@param** newCount 需要给count赋的新值<br /> * **@return**<br /> */<br /> **public** **static** **synchronized** **boolean** **compareAndSwap**(**int** expectCount, **int** newCount) {<br /> //判断count当前值是否和期望的expectCount一样,如果一样将newCount赋值给count<br /> **if** (getCount() == expectCount) {<br /> count = newCount;<br /> **return** **true**;<br /> }<br /> **return** **false**;<br /> }
**public** **static** **void** **main**(String[] args) **throws** InterruptedException {<br /> **long** starTime = System.currentTimeMillis();<br /> **int** threadSize = 100;<br /> CountDownLatch countDownLatch = **new** CountDownLatch(threadSize);<br /> **for** (**int** i = 0; i < threadSize; i++) {<br /> Thread thread = **new** Thread(() -> {<br /> **try** {<br /> **for** (**int** j = 0; j < 10; j++) {<br /> request();<br /> }<br /> } **catch** (InterruptedException e) {<br /> e.printStackTrace();<br /> } **finally** {<br /> countDownLatch.countDown();<br /> }<br /> });<br /> thread.start();<br /> }
countDownLatch.await();<br /> **long** endTime = System.currentTimeMillis();<br /> System.out.println(Thread.currentThread().getName() + ",耗时:" + (endTime - starTime) + ",count=" + count);<br /> }<br />}
输出:
main,耗时:116,count=1000
代码中用了volatile关键字修饰了 count,可以保证 count 在多线程情况下的可见性。关于 volatile 关键字的使用,也是非常非常重要的,前面有讲过,不太了解的朋友可以去看一下:volatile 与 Java 内存模型
咱们再看一下代码,compareAndSwap方法,我们给起个简称吧叫CAS,这个方法有什么作用呢?这个方法使用synchronized修饰了,能保证此方法是线程安全的,多线程情况下此方法是串行执行的。方法由两个参数,expectCount:表示期望的值,newCount:表示要给 count 设置的新值。方法内部通过getCount()获取 count 当前的值,然后与期望的值 expectCount 比较,如果期望的值和 count 当前的值一致,则将新值 newCount 赋值给 count。
再看一下 request()方法,方法中有个 do-while 循环,循环内部获取 count 当前值赋值给了 expectCount,循环结束的条件是compareAndSwap返回 true,也就是说如果 compareAndSwap 如果不成功,循环再次获取 count 的最新值,然后+1,再次调用 compareAndSwap 方法,直到compareAndSwap返回成功为止。
代码中相当于将 count++拆分开了,只对最后一步加锁了,减少了锁的范围,此代码的性能是不是比方式 2 快不少,还能保证结果的正确性。大家是不是感觉这个compareAndSwap方法挺好的,这东西确实很好,java 中已经给我们提供了 CAS 的操作,功能非常强大,我们继续向下看。
CAS 介绍
CAS,compare and swap 的缩写,中文翻译成比较并交换。
CAS 操作包含三个操作数 —— 内存位置(V)、预期原值(A)和新值(B)。如果内存位置的值与预期原值相匹配,那么处理器会自动将该位置值更新为新值 。否则,处理器不做任何操作。无论哪种情况,它都会在 CAS 指令之前返回该 位置的值。(在 CAS 的一些特殊情况下将仅返回 CAS 是否成功,而不提取当前 值。)CAS 有效地说明了“我认为位置 V 应该包含值 A;如果包含该值,则将 B 放到这个位置;否则,不要更改该位置,只告诉我这个位置现在的值即可。”
通常将 CAS 用于同步的方式是从地址 V 读取值 A,执行多步计算来获得新 值 B,然后使用 CAS 将 V 的值从 A 改为 B。如果 V 处的值尚未同时更改,则 CAS 操作成功。
系统底层进行 CAS 操作的时候,会判断当前系统是否为多核系统,如果是就给总线加锁,只有一个线程会对总线加锁成功,加锁成功之后会执行 cas 操作,也就是说 CAS 的原子性实际上是 CPU 实现的, 其实在这一点上还是有排他锁的,只是比起用 synchronized, 这里的排他时间要短的多, 所以在多线程情况下性能会比较好。
java 中提供了对 CAS 操作的支持,具体在sun.misc.Unsafe类中,声明如下:
public final native boolean compareAndSwapObject(Object var1, long var2, Object var4, Object var5);
public final native boolean compareAndSwapInt(Object var1, long var2, int var4, int var5);
public final native boolean compareAndSwapLong(Object var1, long var2, long var4, long var6);
上面三个方法都是类似的,主要对 4 个参数做一下说明。
var1:表示要操作的对象
var2:表示要操作对象中属性地址的偏移量
var4:表示需要修改数据的期望的值
var5:表示需要修改为的新值
JUC 包中大部分功能都是依靠 CAS 操作完成的,所以这块也是非常重要的,有关 Unsafe 类,下篇文章会具体讲解。
synchronized、ReentrantLock这种独占锁属于悲观锁,它是在假设需要操作的代码一定会发生冲突的,执行代码的时候先对代码加锁,让其他线程在外面等候排队获取锁。悲观锁如果锁的时间比较长,会导致其他线程一直处于等待状态,像我们部署的 web 应用,一般部署在 tomcat 中,内部通过线程池来处理用户的请求,如果很多请求都处于等待获取锁的状态,可能会耗尽 tomcat 线程池,从而导致系统无法处理后面的请求,导致服务器处于不可用状态。
除此之外,还有乐观锁,乐观锁的含义就是假设系统没有发生并发冲突,先按无锁方式执行业务,到最后了检查执行业务期间是否有并发导致数据被修改了,如果有并发导致数据被修改了 ,就快速返回失败,这样的操作使系统并发性能更高一些。cas 中就使用了这样的操作。
关于乐观锁这块,想必大家在数据库中也有用到过,给大家举个例子,可能以后会用到。
如果你们的网站中有调用支付宝充值接口的,支付宝那边充值成功了会回调商户系统,商户系统接收到请求之后怎么处理呢?假设用户通过支付宝在商户系统中充值 100,支付宝那边会从用户账户中扣除 100,商户系统接收到支付宝请求之后应该在商户系统中给用户账户增加 100,并且把订单状态置为成功。
处理过程如下:
开启事务
获取订单信息
if(订单状态==待处理){
给用户账户增加100
将订单状态更新为成功
}
返回订单处理成功
提交事务
由于网络等各种问题,可能支付宝回调商户系统的时候,回调超时了,支付宝又发起了一笔回调请求,刚好这 2 笔请求同时到达上面代码,最终结果是给用户账户增加了 200,这样事情就搞大了,公司蒙受损失,严重点可能让公司就此倒闭了。
那我们可以用乐观锁来实现,给订单表加个版本号 version,要求每次更新订单数据,将版本号+1,那么上面的过程可以改为:
获取订单信息,将version的值赋值给V_A
if(订单状态==待处理){
开启事务
给用户账户增加100
update影响行数 = update 订单表 set version = version + 1 where id = 订单号 and version = V_A;
if(update影响行数==1){
提交事务
}else{
回滚事务
}
}
返回订单处理成功
上面的 update 语句相当于我们说的 CAS 操作,执行这个 update 语句的时候,多线程情况下,数据库会对当前订单记录加锁,保证只有一条执行成功,执行成功的,影响行数为 1,执行失败的影响行数为 0,根据影响行数来决定提交还是回滚事务。上面操作还有一点是将事务范围缩小了,也提升了系统并发处理的性能。这个知识点希望你们能 get 到。
CAS 的问题
cas 这么好用,那么有没有什么问题呢?还真有
ABA 问题
CAS 需要在操作值的时候检查下值有没有发生变化,如果没有发生变化则更新,但是如果一个值原来是 A,变成了 B,又变成了 A,那么使用 CAS 进行检查时会发现它的值没有发生变化,但是实际上却变化了。这就是 CAS 的 ABA 问题。常见的解决思路是使用版本号。在变量前面追加上版本号,每次变量更新的时候把版本号加一,那么A-B-A 就会变成1A-2B-3A。目前在 JDK 的 atomic 包里提供了一个类AtomicStampedReference来解决 ABA 问题。这个类的 compareAndSet 方法作用是首先检查当前引用是否等于预期引用,并且当前标志是否等于预期标志,如果全部相等,则以原子方式将该引用和该标志的值设置为给定的更新值。
循环时间长开销大
上面我们说过如果 CAS 不成功,则会原地循环(自旋操作),如果长时间自旋会给 CPU 带来非常大的执行开销。并发量比较大的情况下,CAS 成功概率可能比较低,可能会重试很多次才会成功。
使用 JUC 中的类实现计数器
juc 框架中提供了一些原子操作,底层是通过 Unsafe 类中的 cas 操作实现的。通过原子操作可以保证数据在并发情况下的正确性。
此处我们使用java.util.concurrent.atomic.AtomicInteger类来实现计数器功能,AtomicInteger 内部是采用 cas 操作来保证对 int 类型数据增减操作在多线程情况下的正确性。
计数器代码如下:
package com.itsoku.chat20;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
/
微信公众号:程序员路人
/
public class Demo4 {
//访问次数
static AtomicInteger count = new** AtomicInteger();
//模拟访问一次<br /> **public** **static** **void** **request**() **throws** InterruptedException {<br /> //模拟耗时5毫秒<br /> TimeUnit.MILLISECONDS.sleep(5);<br /> //对count原子+1<br /> count.incrementAndGet();<br /> }
**public** **static** **void** **main**(String[] args) **throws** InterruptedException {<br /> **long** starTime = System.currentTimeMillis();<br /> **int** threadSize = 100;<br /> CountDownLatch countDownLatch = **new** CountDownLatch(threadSize);<br /> **for** (**int** i = 0; i < threadSize; i++) {<br /> Thread thread = **new** Thread(() -> {<br /> **try** {<br /> **for** (**int** j = 0; j < 10; j++) {<br /> request();<br /> }<br /> } **catch** (InterruptedException e) {<br /> e.printStackTrace();<br /> } **finally** {<br /> countDownLatch.countDown();<br /> }<br /> });<br /> thread.start();<br /> }
countDownLatch.await();<br /> **long** endTime = System.currentTimeMillis();<br /> System.out.println(Thread.currentThread().getName() + ",耗时:" + (endTime - starTime) + ",count=" + count);<br /> }<br />}
输出:
main,耗时:119,count=1000
耗时很短,并且结果和期望的一致。
关于原子类操作,都位于java.util.concurrent.atomic包中,下篇文章我们主要来介绍一下这些常用的类及各自的使用场景。