图像分割 (Image Segmentation) 资源:

入门学习

  1. A 2017 Guide to Semantic Segmentation with Deep Learning 概述——用深度学习做语义分割
  2. 从全卷积网络到大型卷积核:深度学习的语义分割全指南
  3. Fully Convolutional Networks
  4. 语义分割中的深度学习方法全解:从FCN、SegNet到各代DeepLab
  5. 图像语义分割之FCN和CRF
  6. 从特斯拉到计算机视觉之「图像语义分割」
  7. 计算机视觉之语义分割
  8. Segmentation Results: VOC2012 PASCAL语义分割比赛排名

  9. U-Net [https://arxiv.org/pdf/1505.04597.pdf]

  10. SegNet [https://arxiv.org/pdf/1511.00561.pdf]
  11. DeepLab [https://arxiv.org/pdf/1606.00915.pdf]
  12. FCN [https://arxiv.org/pdf/1605.06211.pdf]
  13. ENet [https://arxiv.org/pdf/1606.02147.pdf]
  14. LinkNet [https://arxiv.org/pdf/1707.03718.pdf]
  15. DenseNet [https://arxiv.org/pdf/1608.06993.pdf]
  16. Tiramisu [https://arxiv.org/pdf/1611.09326.pdf]
  17. DilatedNet [https://arxiv.org/pdf/1511.07122.pdf]
  18. PixelNet [https://arxiv.org/pdf/1609.06694.pdf]
  19. ICNet [https://arxiv.org/pdf/1704.08545.pdf]
  20. ERFNet [http://www.robesafe.uah.es/personal/eduardo.romera/pdfs/Romera17iv.pdf]
  21. RefineNet [https://arxiv.org/pdf/1611.06612.pdf]
  22. PSPNet [https://arxiv.org/pdf/1612.01105.pdf]
  23. CRFasRNN [http://www.robots.ox.ac.uk/%7Eszheng/papers/CRFasRNN.pdf]
  24. Dilated convolution [https://arxiv.org/pdf/1511.07122.pdf]
  25. DeconvNet [https://arxiv.org/pdf/1505.04366.pdf]
  26. FRRN [https://arxiv.org/pdf/1611.08323.pdf]
  27. GCN [https://arxiv.org/pdf/1703.02719.pdf]
  28. DUC, HDC [https://arxiv.org/pdf/1702.08502.pdf]
  29. Segaware [https://arxiv.org/pdf/1708.04607.pdf]
  30. Semantic Segmentation using Adversarial Networks [https://arxiv.org/pdf/1611.08408.pdf]

    综述

  31. A Review on Deep Learning Techniques Applied to Semantic Segmentation Alberto Garcia-Garcia, Sergio Orts-Escolano, Sergiu Oprea, Victor Villena-Martinez, Jose Garcia-Rodriguez 2017

  32. Computer Vision for Autonomous Vehicles: Problems, Datasets and State-of-the-Art
  33. 基于内容的图像分割方法综述 姜 枫 顾 庆 郝慧珍 李 娜 郭延文 陈道蓄 2017

  34. Semantic Image Segmentation with Deep Learning

  35. A 2017 Guide to Semantic Segmentation with Deep Learning
  36. Image Segmentation with Tensorflow using CNNs and Conditional Random Fields

  37. CS231n: Convolutional Neural Networks for Visual Recognition Lecture 11 Detection and Segmentation

  38. Machine Learning for Semantic Segmentation - Basics of Modern Image Analysis

  39. U-Net (https://arxiv.org/pdf/1505.04597.pdf)

  40. SegNet (https://arxiv.org/pdf/1511.00561.pdf)
  41. DeepLab (https://arxiv.org/pdf/1606.00915.pdf)
  42. FCN (https://arxiv.org/pdf/1605.06211.pdf)
  43. ENet (https://arxiv.org/pdf/1606.02147.pdf)
  44. LinkNet (https://arxiv.org/pdf/1707.03718.pdf)
  45. DenseNet (https://arxiv.org/pdf/1608.06993.pdf)
  46. Tiramisu (https://arxiv.org/pdf/1611.09326.pdf)
  47. DilatedNet (https://arxiv.org/pdf/1511.07122.pdf)
  48. PixelNet (https://arxiv.org/pdf/1609.06694.pdf)
  49. ICNet (https://arxiv.org/pdf/1704.08545.pdf)
  50. ERFNet (http://www.robesafe.uah.es/personal/eduardo.romera/pdfs/Romera17iv.pdf)
  51. RefineNet (https://arxiv.org/pdf/1611.06612.pdf)
  52. PSPNet (https://arxiv.org/pdf/1612.01105.pdf)
  53. CRFasRNN (http://www.robots.ox.ac.uk/%7Eszheng/papers/CRFasRNN.pdf)
  54. Dilated convolution (https://arxiv.org/pdf/1511.07122.pdf)
  55. DeconvNet (https://arxiv.org/pdf/1505.04366.pdf)
  56. FRRN (https://arxiv.org/pdf/1611.08323.pdf)
  57. GCN (https://arxiv.org/pdf/1703.02719.pdf)
  58. DUC, HDC (https://arxiv.org/pdf/1702.08502.pdf)
  59. Segaware (https://arxiv.org/pdf/1708.04607.pdf)
  60. Semantic Segmentation using Adversarial Networks (https://arxiv.org/pdf/1611.08408.pdf)

Instance aware segmentation

  1. FCIS [https://arxiv.org/pdf/1611.07709.pdf]
  2. MNC [https://arxiv.org/pdf/1512.04412.pdf]
  3. DeepMask [https://arxiv.org/pdf/1506.06204.pdf]
  4. SharpMask [https://arxiv.org/pdf/1603.08695.pdf]
  5. Mask-RCNN [https://arxiv.org/pdf/1703.06870.pdf]
  6. RIS [https://arxiv.org/pdf/1511.08250.pdf]
  7. FastMask [https://arxiv.org/pdf/1612.08843.pdf]

Satellite images segmentation

Video segmentation

Autonomous driving

Annotation Tools:

  1. Stanford Background Dataset[http://dags.stanford.edu/projects/scenedataset.html]

    1. Sift Flow Dataset[http://people.csail.mit.edu/celiu/SIFTflow/]
    2. Barcelona Dataset[http://www.cs.unc.edu/~jtighe/Papers/ECCV10/]
    3. Microsoft COCO dataset[http://mscoco.org/]
    4. MSRC Dataset[http://research.microsoft.com/en-us/projects/objectclassrecognition/]
    5. LITS Liver Tumor Segmentation Dataset[https://competitions.codalab.org/competitions/15595]
    6. KITTI[http://www.cvlibs.net/datasets/kitti/eval_road.php]
    7. Stanford background dataset[http://dags.stanford.edu/projects/scenedataset.html]
    8. Data from Games dataset[https://download.visinf.tu-darmstadt.de/data/from_games/]
    9. Human parsing dataset[https://github.com/lemondan/HumanParsing-Dataset]
    10. Silenko person database[https://github.com/Maxfashko/CamVid]
    11. Mapillary Vistas Dataset[https://www.mapillary.com/dataset/vistas]
    12. Microsoft AirSim[https://github.com/Microsoft/AirSim]
    13. MIT Scene Parsing Benchmark[http://sceneparsing.csail.mit.edu/]
    14. COCO 2017 Stuff Segmentation Challenge[http://cocodataset.org/#stuff-challenge2017]
    15. ADE20K Dataset[http://groups.csail.mit.edu/vision/datasets/ADE20K/]
    16. INRIA Annotations for Graz-02[http://lear.inrialpes.fr/people/marszalek/data/ig02/]

      比赛

  2. MSRC-21 [http://rodrigob.github.io/are_we_there_yet/build/semantic_labeling_datasets_results.html]

  3. Cityscapes [https://www.cityscapes-dataset.com/benchmarks/]
  4. VOC2012 [http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=6]

    领域专家

  5. Jonathan Long

  6. Liang-Chieh Chen
  7. Hyeonwoo Noh
  8. Bharath Hariharan
  9. Fisher Yu
  10. Vijay Badrinarayanan
  11. Guosheng Lin