84. 柱状图中最大的矩形
双指针
遍历列,然后向左向右分别找到第一个小于当前高度的索引
计算宽度为right-left-1,(表示不包含小于当前列高度的宽度)
class Solution {public:int largestRectangleArea(vector<int>& heights) {int sum = 0;for (int i = 0; i < heights.size(); i++) {int left = i;int right = i;for (; left >= 0; left--) {if (heights[left] < heights[i]) break;}for (; right < heights.size(); right++) {if (heights[right] < heights[i]) break;}int w = right - left - 1;int h = heights[i];sum = max(sum, w * h);}return sum;}};
动态规划
class Solution {public:int largestRectangleArea(vector<int>& heights) {vector<int> minLeftIndex(heights.size());vector<int> minRightIndex(heights.size());int size = heights.size();// 记录每个柱子 左边第一个小于该柱子的下标minLeftIndex[0] = -1; // 注意这里初始化,防止下面while死循环for (int i = 1; i < size; i++) {int t = i - 1;// 这里不是用if,而是不断向左寻找的过程while (t >= 0 && heights[t] >= heights[i])//此处的minLeftIndex[t]即相当于minLeftIndex[i-1]//要通过while循环判断minLeftIndex[i-1]记录的高度是否小于当前高度//若还不小于,需要再向左查找t = minLeftIndex[t];minLeftIndex[i] = t;}// 记录每个柱子 右边第一个小于该柱子的下标minRightIndex[size - 1] = size; // 注意这里初始化,防止下面while死循环for (int i = size - 2; i >= 0; i--) {int t = i + 1;// 这里不是用if,而是不断向右寻找的过程while (t < size && heights[t] >= heights[i]) t = minRightIndex[t];minRightIndex[i] = t;}// 求和int result = 0;for (int i = 0; i < size; i++) {int sum = heights[i] * (minRightIndex[i] - minLeftIndex[i] - 1);result = max(sum, result);}return result;}};
单调栈

维护一个单调递增的栈
当遇到当前高度小于栈顶高度时,说明找到了右边第一个小于栈顶高度的柱子
同时因为是单调递增的,所以栈顶元素前一个柱子的高度一定小于栈顶高度
class Solution {
public:
int largestRectangleArea(vector<int>& heights) {
stack<int> st;
heights.insert(heights.begin(), 0); // 数组头部加入元素0
heights.push_back(0); // 数组尾部加入元素0
st.push(0);
int result = 0;
for (int i = 1; i < heights.size(); i++) {
while (heights[i] < heights[st.top()]) {
int mid = st.top();
st.pop();
int w = i - st.top() - 1;
int h = heights[mid];
result = max(result, w * h);
}
st.push(i);
}
return result;
}
};
