import torchimport torch.nn as nnimport torch.utils.data as Dataimport torchvision      import matplotlib.pyplot as plttorch.manual_seed(1)    # reproducible# Hyper ParametersEPOCH = 5           # 训练整批数据多少次, 为了节约时间, 我们只训练一次BATCH_SIZE = 50LR = 0.001          # 学习率DOWNLOAD_MNIST = True  # 如果你已经下载好了mnist数据就写上 False# Mnist 手写数字train_data = torchvision.datasets.MNIST(    root='mnist',    # 保存或者提取位置    train=True,  # this is training data    transform=torchvision.transforms.ToTensor(),       download=DOWNLOAD_MNIST,         )test_data = torchvision.datasets.MNIST(root='mnist', train=False)# 批训练 50samples, 1 channel, 28x28 (50, 1, 28, 28)train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)# 为了节约时间, 我们测试时只测试前2000个test_x = torch.unsqueeze(test_data.data, dim=1).type(torch.FloatTensor)[:2000]/255.   # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)test_y = test_data.targets[:2000]class CNN(nn.Module):    def __init__(self):        super(CNN, self).__init__()        self.conv1 = nn.Sequential(  # input shape (1, 28, 28)            nn.Conv2d(                in_channels=1,      # input height                out_channels=16,    # n_filters                kernel_size=5,      # filter size                stride=1,           # filter movement/step                padding=2,      # 如果想要 con2d 出来的图片长宽没有变化, padding=(kernel_size-1)/2 当 stride=1            ),      # output shape (16, 28, 28)            nn.ReLU(),    # activation            nn.MaxPool2d(kernel_size=2),    # 在 2x2 空间里向下采样, output shape (16, 14, 14)        )        self.conv2 = nn.Sequential(  # input shape (16, 14, 14)            nn.Conv2d(16, 32, 5, 1, 2),  # output shape (32, 14, 14)            nn.ReLU(),  # activation            nn.MaxPool2d(2),  # output shape (32, 7, 7)        )        self.out = nn.Linear(32 * 7 * 7, 10)   # fully connected layer, output 10 classes    def forward(self, x):        x = self.conv1(x)        x = self.conv2(x)        x = x.view(x.size(0), -1)   # 展平多维的卷积图成 (batch_size, 32 * 7 * 7)        output = self.out(x)        return outputcnn = CNN()print(cnn)  # net architecturecnn=cnn.cuda()optimizer = torch.optim.Adam(cnn.parameters(), lr=LR)   # optimize all cnn parametersloss_func = nn.CrossEntropyLoss()   # the target label is not one-hotted# training and testingfor epoch in range(EPOCH):    to=0    ac=0    for step, (b_x, b_y) in enumerate(train_loader):   # 分配 batch data, normalize x when iterate train_loader        b_x=b_x.cuda()        b_y=b_y.cuda()        output = cnn(b_x)               # cnn output        loss = loss_func(output, b_y)   # cross entropy loss        optimizer.zero_grad()           # clear gradients for this training step        loss.backward()                 # backpropagation, compute gradients        optimizer.step()                # apply gradients        pred_y = torch.max(output, 1)[1].data.cpu().numpy().squeeze()        acc_y=b_y.data.cpu().numpy()        for i in range(len(pred_y)):            if acc_y[i]==pred_y[i]:                ac+=1            to+=1    print("Epoch:",epoch+1,"Acc",ac/to)test=test_x[:10].cuda()test_output = cnn(test)pred_y = torch.max(test_output, 1)[1].data.cpu().numpy().squeeze()print(pred_y, 'prediction number')print(test_y[:10].cpu().numpy(), 'real number')
