二叉搜索树/平衡二叉树

1、二叉搜索树(BST)的定义

二叉搜索树是一种基于节点的二叉树数据结构,具有以下属性:

  • 节点的左子树只包含键值小于节点键值的节点。
  • 节点的右子树只包含键大于该节点键的节点。
  • 左右子树也必须是二叉搜索树。
  • 不能有重复的节点。

    2、插入

    简单插入
    从根开始搜索一个键,直到找到一个叶节点。一旦找到一个叶节点,新节点将作为叶节点的子节点添加。
    比较插入:

  • 从根开始。

  • 将插入元素与根元素进行比较,如果小于根元素,则递归向左,否则递归向右。
  • 到达末尾后,只需在左边(如果小于当前节点)插入该节点,否则在右边插入该节点。

    3、删除

    删除有以下几种情况:

  • 删除的结点是叶结点,直接从树中删除

  • 删除的结点有一个叶结点;将叶结点复制到结点并删除叶结点
  • 删除的结点有两个叶结点:具体有两种方式(中序遍历):
    • 将当前结点的右结点的左子树的最小值复制到当前结点,并删除最小值结点
    • 将当前结点的左结点的右子树的最大值复制到当前结点,并删除最大值结点

注意:中序遍历的结果是从小到大。

4、平衡二叉树

一棵空树是平衡二叉树;若 T 是一棵非空二叉树,其左、右子树为二叉搜索树/平衡二叉树 - 图1二叉搜索树/平衡二叉树 - 图2,令二叉搜索树/平衡二叉树 - 图3二叉搜索树/平衡二叉树 - 图4分别为左、右子树的深度。当且仅当:

  • 二叉搜索树/平衡二叉树 - 图5二叉搜索树/平衡二叉树 - 图6都是平衡二叉树;
  • 二叉搜索树/平衡二叉树 - 图7-二叉搜索树/平衡二叉树 - 图8≤ 1;

时,则 T 是平衡二叉树。
相应地定义二叉搜索树/平衡二叉树 - 图9-二叉搜索树/平衡二叉树 - 图10为二叉平衡树的平衡因子 (balance factor) 。因此,平衡二叉树上所有结点的平衡因子可能是 -1 , 0 , 1 。
换言之,若一棵二叉树上任一结点的平衡因子的绝对值都不大于 1 ,则该树是就平衡二叉树。
为什么有平衡二叉树?
二叉树的理想时间复杂度是二叉搜索树/平衡二叉树 - 图11,最坏情况是二叉搜索树/平衡二叉树 - 图12。如下图所示:
二叉搜索树/平衡二叉树 - 图13
重平衡二叉搜索树的主要操作称为旋转。
假设存在x、y和z的三叉树重组(对应于单或双旋转)后的树T ,从左到右的叶子结点分别为二叉搜索树/平衡二叉树 - 图14,存在以下几种情况:
二叉搜索树/平衡二叉树 - 图15

5、实现

LinkedBinaryTree、 MapBase

  1. import LinkedBinaryTree, MapBase
  2. class TreeMap(LinkedBinaryTree, MapBase):
  3. """sorted map implementation using a binary search tree"""
  4. # ---------------override position class-------------
  5. class Position(LinkedBinaryTree.Position):
  6. def key(self):
  7. """return key of map's key-value pair"""
  8. return self.element()._key
  9. def value(self):
  10. return self.element()._value
  11. # --------------------- nonpublic utilities ------------------
  12. def _subtree_search(self, p, k):
  13. """return Position of p's subtree having key k, or last node searched"""
  14. if k == p.key():
  15. return p
  16. elif k < p.key():
  17. if self.left(p) is not None:
  18. return self._subtree_search(self.left(p), k)
  19. elif self.right(p) is not None:
  20. return self._subtree_search(self.right(p), k)
  21. return p
  22. def _subtree_first_position(self, p):
  23. """return position of first item in subtree rooted at p."""
  24. walk = p
  25. while self.left(walk) is not None: # keep walking left
  26. walk = self.left(walk)
  27. return walk
  28. def _subtree_last_position(self, p):
  29. """return position of last item in subtree rooted at p"""
  30. walk = p
  31. while self.right(walk) is not None:
  32. walk = self.right(walk)
  33. return walk
  34. def first(self):
  35. """return the first postion in the tree, 最小值 """
  36. return self._subtree_first_position(self.root()) if len(self) > 0 else None
  37. def last(self):
  38. """return the last position in the tree, 最大值"""
  39. return self._subtree_last_position(self.root()) if len(self) > 0 else None
  40. def before(self, p):
  41. """
  42. return the position just before p in the natural order.
  43. return None if p is the first position.
  44. """
  45. self._validate(p) # inherited from LinkedBinaryTree
  46. if self.left(p):
  47. # 查找p结点左子树的最大值
  48. return self._subtree_last_position(self.left(p))
  49. else:
  50. # 如果p结点没有左子树,则找其父节点
  51. # walk upward
  52. walk = p
  53. above = self.parent(walk)
  54. while above is not None and walk == self.left(above):
  55. walk = above
  56. above = self.parent(walk)
  57. return above
  58. def after(self, p):
  59. """
  60. return the position just after p in the natural order.
  61. return None if p is the last position.
  62. """
  63. self._validate(p) # inherited from LinkedBinaryTree
  64. if self.right(p):
  65. return self._subtree_first_position(self.right(p))
  66. else:
  67. # walk upward
  68. walk = p
  69. above = self.parent(walk)
  70. while above is not None and walk == self.right(above):
  71. walk = above
  72. above = self.parent(walk)
  73. return above
  74. def find_position(self, k):
  75. """return position with key k, or else neighbor """
  76. if self.is_empty():
  77. return None
  78. else:
  79. p = self._subtree_search(self.root(), k)
  80. self._rebalance_access(p) # hook for balanced tree subclasses
  81. return p
  82. def find_min(self):
  83. """return (key,value) pair with minimum key"""
  84. if self.is_empty():
  85. return None
  86. else:
  87. p = self.first()
  88. return (p.key(), p.value())
  89. def find_ge(self, k):
  90. """
  91. return (key,value) pair with least key greater than or equal to k.
  92. return None if there does not exist such a key
  93. """
  94. if self.is_empty():
  95. return None
  96. else:
  97. p = self.find_position(k)
  98. if p.key() < k: # may not find exact match
  99. p = self.after(p) # p’s key is too small
  100. return (p.key(), p.value()) if p is not None else None
  101. def find_range(self, start, stop):
  102. """iterate all (key,value) pairs such that start<=key<stop.
  103. if start is None, iteration begins with minimum key of map.
  104. if stop is None,iteration continues through the maximum key of map"""
  105. if not self.is_empty():
  106. if start is None:
  107. p = self.first()
  108. else:
  109. # initialize p with logic similar to find_ge
  110. p = self.find_position(start)
  111. if p.key() < start:
  112. p = self.after(p)
  113. while p is not None and (stop is None or p.key() < stop):
  114. yield (p.key(), p.value())
  115. p = self.after(p)
  116. def __getitem__(self, k):
  117. """return value associated with key k (raise KeyError if not found)"""
  118. if self.is_empty():
  119. raise KeyError('Key Error: ' + repr(k))
  120. else:
  121. p = self._subtree_search(self.root(), k)
  122. self._rebalance_access(p) # hook for balanced tree subclasses
  123. if k != p.key():
  124. raise KeyError('Key Error: ' + repr(k))
  125. return p.value()
  126. def __setitem__(self, k, v):
  127. """assign value v to key k, overwriting existing value if present"""
  128. if self.is_empty():
  129. leaf = self._add_root(self._Item(k, v)) # from LinkedBinaryTree
  130. else:
  131. p = self._subtree_search(self.root(), k)
  132. if p.key() == k:
  133. p.element()._value = v # replace existing item's value
  134. self._rebalance_access(p) # hook for balanced tree subclasses
  135. return
  136. else:
  137. item = self._Item(k, v)
  138. if p.key() < k:
  139. leaf = self._add_right(p, item) # inherited from LinkedBinaryTree
  140. else:
  141. leaf = self._add_left(p, item) # inherited from LinkedBinaryTree
  142. self._rebalance_insert(leaf) # hook for balanced tree subclasses
  143. def __iter__(self):
  144. """generate an iteration of all keys in the map in order"""
  145. p = self.first()
  146. while p is not None:
  147. yield p.key()
  148. p = self.after(p)
  149. def delete(self, p):
  150. """remove the item at given position"""
  151. self._validate(p)
  152. if self.left(p) and self.right(p):
  153. replacement = self._subtree_last_position(self.left(p))
  154. self._replace(p, replacement.element())
  155. p = replacement
  156. # now p has at most one child
  157. parent = self.parent(p)
  158. self._delete(p)
  159. self._rebalance_delete(parent) # if root deleted, parent is None
  160. def __delitem__(self, k):
  161. """remove the item at given position"""
  162. if not self.is_empty():
  163. p = self._subtree_search(self.root(), k)
  164. if k == p.ley():
  165. self.delete(p) # rely on positional version
  166. return
  167. self._rebalance_access(p) # hook for balanced tree subclasses
  168. raise KeyError('KeyError: ' + repr(k))
  169. def _rebalance_insert(self, p):
  170. pass
  171. def _rebalance_delete(self, p):
  172. pass
  173. def _rebalance_access(self, p):
  174. pass
  175. def _relink(self, parent, child, make_left_child):
  176. """relink parent node with child node (we allow child to be None)"""
  177. if make_left_child:
  178. parent._left = child
  179. else:
  180. parent._right = child
  181. if child is not None:
  182. child._parent = parent
  183. def _rotate(self, p):
  184. """rotate position p above its parent"""
  185. # z-->y-->x
  186. x = p._node
  187. y = x._parent # we assume this exists
  188. z = y._parent # grandparent (possibly None)
  189. if z is None:
  190. self._root = x # x becomes root
  191. x._parent = None
  192. else:
  193. self._relink(z, x, y == z._left) # x becomes a direct child of z
  194. # Now rotate x and y , including transfer of middle subtree
  195. if x == y._left:
  196. self._relink(y, x._right, True) # x. right becomes left child of y
  197. self._relink(x, y, False) # y becomes right child of x
  198. else:
  199. self._relink(y, x._left, False) # x. left becomes right child of y
  200. self._relink(x, y, True) # y becomes left child of x
  201. def _restructure(self, x):
  202. """perform trinode restructure of position x with parent/grandparent"""
  203. y = self.parent(x)
  204. z = self.parent(y)
  205. if (x == self.right(y)) == (y == self.right(z)): # matching alignments
  206. self._rotate(y) # single rotation (of y)
  207. return y # y is new subtree root
  208. else: # opposite alignments
  209. self._rotate(x) # double rotation (of x)
  210. self._rotate(x)
  211. return x # x is new subtree root
  212. if __name__ == '__main__':
  213. #--------------------
  214. T = TreeMap()
  215. T['b'] = 4
  216. T['a'] = 5
  217. T['c'] = 6
  218. p = T.first()
  219. print(p.key())
  220. print(T.parent(p).key())
  221. print(T.find_position('a').value(),
  222. T.find_position('b').value(),
  223. T.find_position('c').value())
  224. last = T.last()
  225. print(T.left(p),T.right(p))
  226. print(last.key())
  227. print([*T])
  228. print(T['a'])
  229. T.delete(p)
  230. print([*T])