1、树简介

树是一种非线性结构。比数组和链表快。
树不是顺序排列的对象之间简单的前后关系,而是分层的,有些对象在上面,有些对象在下面。
树是一种抽象的数据类型,它分层次地存储元素。除了顶部元素外,树中的每个元素都有一个父元素和零个或多个子元素。
一棵树通常是通过在椭圆或矩形中放置元素,并通过直线画出父母和孩子之间的连接来实现的。
通常称顶部元素为树的根,但它被绘制为最高的元素,其他元素被连接在下面(与植物树相反)。
2021-08-26-21-14-20-508423.png
设p是t树的一个节点的位置,p的深度是p的祖先的个数,不包括p本身。
p的深度也可以递归定义为:

  • 如果p是根,则p的深度为0。
  • 否则,p的深度等于1加上p的父结点的深度。

树T中位置p的高度也是递归定义的:

  • 如果p是叶节点,那么p的高度是0。
  • 否则,p的高度比p子结点的最大高度大1。

代码如下:

  1. class Tree:
  2. """abstract base class representing a tree structure"""
  3. # ----------------------nested Position class----------------
  4. class Position:
  5. """an abstraction reprenting the location of a single element"""
  6. def element(self):
  7. """return the element stored at this Position"""
  8. raise NotImplementedError('must be implemented by subclass')
  9. def __eq__(self, other):
  10. """return true if other Position represents the same location"""
  11. raise NotImplementedError('must be implemented by subclass')
  12. def __ne__(self, other):
  13. return not (self == other)
  14. # --------------abstract methods that concrete subclass must support------
  15. def root(self):
  16. """return position representing the tree's root (None if empty)"""
  17. raise NotImplementedError('must be implemented by subclass')
  18. def parent(self, p):
  19. """Return Position representing p s parent (or None if p is root)"""
  20. raise NotImplementedError('must be implemented by subclass')
  21. def num_children(self, p):
  22. """Return the number of children that Position p has"""
  23. raise NotImplementedError('must be implemented by subclass')
  24. def children(self, p):
  25. """Generate an iteration of Positions representing p s children"""
  26. raise NotImplementedError('must be implemented by subclass')
  27. def __len__(self):
  28. """Return the total number of elements in the tree"""
  29. raise NotImplementedError('must be implemented by subclass')
  30. # ---------- concrete methods implemented in this class ----------
  31. def is_root(self, p):
  32. return self.root() == p
  33. def is_leaf(self, p):
  34. return self.num_children(p) == 0
  35. def is_empty(self):
  36. return len(self) == 0
  37. def depth(self, p):
  38. """Return the number of levels separating Position p from the root."""
  39. if self.is_root(p):
  40. return 0
  41. else:
  42. return self.depth(self.parent(p)) + 1
  43. def _height1(self):
  44. """return the height of the tree"""
  45. return max(self.depth(p) for p in self.positions() if self.is_leaf(p))
  46. def _height2(self, p):
  47. """return the height of the subtree rooted at position p"""
  48. if self.is_leaf(p):
  49. return 0
  50. else:
  51. return max(self._height2(c) for c in self.children(p)) + 1
  52. def height(self, p=None):
  53. """
  54. return the height of the subtree rooted at postion p.
  55. if p is None, return the height of the entire tree
  56. """
  57. if p is None:
  58. p = self.root()
  59. return self._height2(p)

2、二叉树

二叉树是一种有序树,具有以下属性:

  • 每个节点最多有两个子节点。
  • 每个子节点都被标记为左子节点或右子节点。
  • 节点顺序,左子节点在右子节点之前

代码如下:

  1. class BinaryTree(Tree):
  2. """abstract base class representing a binary tree structure"""
  3. # --------------additional abstract methods------------
  4. def left(self, p):
  5. """return a position representing p's left child. """
  6. raise NotImplementedError('must be implemented by subclass')
  7. def right(self, p):
  8. """return a position representing p's right child"""
  9. raise NotImplementedError('must be implemented by subclass')
  10. # -------concrete methods implemented in this class--------
  11. def sibling(self, p):
  12. """return a position representing p's sibling """
  13. parent = self.parent(p)
  14. if parent is None:
  15. return None
  16. else:
  17. if p == self.left(parent):
  18. return self.right(parent)
  19. else:
  20. return self.left(parent)
  21. def children(self, p):
  22. """generate an iteration of positions representing p's children"""
  23. if self.left(p) is not None:
  24. yield self.left(p)
  25. if self.right(p) is not None:
  26. yield self.right(p)

3、链表树

2021-08-26-21-14-20-677420.png
代码如下:
LinkedQueue

import LinkedQueue
class LinkedBinaryTree(BinaryTree):
    """Linked representation of a binary tree structure"""

    class _Node:
        """lightweight , nonpublic class for storing a node"""
        __slots__ = '_element', '_parent', '_left', '_right'

        def __init__(self, element, parent=None, left=None, right=None):
            self._element = element
            self._parent = parent
            self._left = left
            self._right = right

    class Position(BinaryTree.Position):
        """an abstraction representing the location of a single element"""

        def __init__(self, container, node):
            """constructor should not be invoked by user"""
            self._container = container
            self._node = node

        def element(self):
            """return the element stored at this position"""
            return self._node._element

        def __eq__(self, other):
            """return true if other is a position representing the same location"""
            return type(other) is type(self) and other._node is self._node

    def _validate(self, p):
        """return associated node, if position is valid"""
        if not isinstance(p, self.Position):
            raise TypeError('p must be proper position type')
        if p._container is not self:
            raise ValueError('p does not belong to this container')
        if p._node._parent is p._node:  # convention for deprecated nodes
            raise ValueError('p is no longer valid')
        return p._node

    def _make_position(self, node):
        """return position instance for given node """
        return self.Position(self, node) if node is not None else None

    # -------------------------- binary tree constructor --------------------------
    def __init__(self):
        """create an initially empty binary tree"""
        self._root = None
        self._size = 0

    # -------------------------- public accessors --------------------------
    def __len__(self):
        return self._size

    def root(self):
        return self._make_position(self._root)

    def parent(self, p):
        """return the position of p's parent"""
        node = self._validate(p)
        return self._make_position(node._parent)

    def left(self, p):
        node = self._validate(p)
        return self._make_position(node._left)

    def right(self, p):
        node = self._validate(p)
        return self._make_position(node._right)

    def num_children(self, p):
        node = self._validate(p)
        count = 0
        if node._left is not None:
            count += 1
        if node._right is not None:
            count += 1
        return count

    def _add_root(self, e):
        """place element e at the root of an empty tree and return new position"""
        if self._root is not None: raise ValueError('root exists')
        self._size = 1
        self._root = self._Node(e)
        return self._make_position(self._root)

    def _add_left(self, p, e):
        """
        create a new left child for position p,storing element e.
        return ValueError if Position p is invalid or p already has a left child
        """
        node = self._validate(p)
        if node._left is not None: raise ValueError('left child exists')
        node._left = self._Node(e, node)  # node is its parent
        return self._make_position(node._left)

    def _add_right(self, p, e):
        node = self._validate(p)
        if node._right is not None: raise ValueError('right child exists')
        node._right = self._Node(e, node)
        return self._make_position(node._right)

    def _replace(self, p, e):
        """Replace the element at position p with e, and return old element"""
        node = self._validate(p)
        old = node._element
        node._element = e
        return old

    def _delete(self, p):
        """
        delete the node at position p , and replace it with its child , if any.
        return the element that had been stored at position p.
        raise valueerror if position p is invalid or p has two children
        """
        node = self._validate(p)
        if self.num_children(p) == 2: raise ValueError('p has two children')
        child = node._left if node._left else node._right  # might be None
        if child is not None:
            child._parent = node._parent  # child s grandparent becomes parent
        if node is self._root:
            self.root = child  # child becomes root
        else:
            parent = node._parent
            if node is parent._left:
                parent._left = child
            else:
                parent._right = child
        self._size -= 1
        node._parent = node  # convention for deprecated node
        return node._element

    def _attach(self, p, t1, t2):
        """attach tree t1 and t2 as left and right subtrees of external p"""
        node = self._validate(p)
        if not self.is_leaf(p): raise ValueError('position must be leaf')
        if not type(self) is type(t1) is type(t2):  # all 3 trees must be same type
            raise TypeError('tree types must match')
        self._size += len(t1) + len(t2)
        if not t1.is_empty():
            t1._root._parent = node  # attached t1 as left subtree of node
            node._left = t1._root
            t1._root = None  # set t1 instance to empty
            t1._size = 0
        if not t2.is_empty():  # attached t2 as right subtree of node
            t2._root.parent = node
            node._right = t2
            t2._root = None
            t2._size = 0

    def __iter__(self):
        """generate an iteration of the tree's elements"""
        for p in self.positions():
            yield p.element()

    def preorder(self):
        """generate a preorder iteration of positions in the tree"""
        if not self.is_empty():
            for p in self._subtree_preorder(self.root()):
                yield p

    def _subtree_preorder(self, p):
        """generate a preorder iteration of positions in subtree rooted at p"""
        yield p
        for c in self.children(p):
            for other in self._subtree_preorder(c):
                yield other

    def positions(self):
        """generate an iteration of the tree's positions"""
        return self.preorder()  # return entire preorder iteration

    def postorder(self):
        """generate a postorder iteration of positions in the tree"""
        if not self.is_empty():
            for p in self._subtree_postorder(self.root()):
                yield p

    def _subtree_postorder(self, p):
        """generate a postorder iteration of positions in subtree rooted at p"""
        for c in self.children(p):
            for other in self._subtree_postorder(c):
                yield other
        yield p

    def breadthfirst(self):
        """generate a breath-first iteration of the positions of the tree"""
        if not self.is_empty():
            fringe = LinkedQueue()  # known positions not yet yielded
            fringe.enqueue(self.root())  # starting with the root
            while not fringe.is_empty():
                p = fringe.dequeue()  # remove from front of the queue
                yield p  # report this position
                for c in self.children(p):
                    fringe.enqueue(c)  # add children to back of queue

    def inorder(self):
        """generate a breath-first iteration of the positions"""
        if not self.is_empty():
            for p in self._subtree_inorder(self.root()):
                yield p

    def _subtree_inorder(self, p):
        """generate an inorder iteration of positions in subtree rooted at p"""
        if self.left(p) is not None:  # if left child exists, traverse its subtree
            for other in self._subtree_inorder(self.left(p)):
                yield other
        yield p  # visit p between its subtrees
        if self.right(p) is not None:  # if right child exists, traverse its subtree
            for other in self._subtree_inorder(self.right(p)):
                yield other


if __name__ == '__main__':
    T = LinkedBinaryTree()
    T.root()
    T.is_empty()
    T._add_root(10)
    root = T.root()
    T._add_left(root, 8)
    T._add_right(root, 30)
    left = T.left(root)
    right = T.right(root)

    print('sibling of left: ', T.sibling(left).element())

    print('***preorder***')
    for p in T.preorder():
        print(p.element())

    print('***postorder***')
    for p in T.postorder():
        print(p.element())

    print('***inorder***')
    for p in T.inorder():
        print(p.element())

    print('***breadthfirst***')
    for p in T.breadthfirst():
        print(p.element())