来自于:小陀螺_Coder
最近要写汽车的控制,发现比人物控制难很多,涉及到汽车的很多知识,自己写了一点不忍直视,各种bug,然后被告知untiy官方资源包里有控制脚本,就去学习了一下,然后借鉴了网上的一些教程,在这里表示衷心感谢,为了方面自己和他人,免得自己弄丢,然后贴在这里:
using System;using UnityEngine;namespace UnityStandardAssets.Vehicles.Car//此处可改成自己的car名字{internal enum CarDriveType{FrontWheelDrive,//前驱RearWheelDrive,//后驱FourWheelDrive//四驱}internal enum SpeedType{MPH,//英里KPH//千米/h}public class CarController : MonoBehaviour{//[SerializeField]是为了成员变量可以在检视面板上显示[SerializeField] private CarDriveType m_CarDriveType = CarDriveType.FourWheelDrive; //四驱[SerializeField] private WheelCollider[] m_WheelColliders = new WheelCollider[4]; //存放轮子的数组[SerializeField] private GameObject[] m_WheelMeshes = new GameObject[4]; //车轮模型[SerializeField] private WheelEffects[] m_WheelEffects = new WheelEffects[4];//存放特效数组,粒子,音效等[SerializeField] private Vector3 m_CentreOfMassOffset;//车的重心[SerializeField] private float m_MaximumSteerAngle;//最大可转角度[Range(0, 1)] [SerializeField] private float m_SteerHelper; // 0 is raw physics , 1 the car will grip in the direction it is facing//初始化为0,1是车被控制面对的方向[Range(0, 1)] [SerializeField] private float m_TractionControl; // 0 is no traction control, 1 is full interference///0没有牵引力控制系统,1是完整的干扰//所有车轮的扭矩 扭矩越大,加速性能越好;扭矩越小,加速性能越差//如某车的1挡齿比(齿轮的齿数比,本质就是齿轮的半径比)是3,尾牙为4,轮胎半径为0.3米,原扭矩是200Nm的话,最后在轮轴的扭矩就变成200×3×4=2400Nm,//再除以轮胎半径0.3米后,轮胎与地面摩擦的部分就有2400Nm/0.3m=8000N,即800公斤力的驱动力,这就足以驱动汽车了//驱动力公式:驱动力=扭矩×变速箱齿比×主减速器速比×机械效率÷轮胎半径[SerializeField] private float m_FullTorqueOverAllWheels;//所有轮胎的扭矩[SerializeField] private float m_ReverseTorque;//反向扭矩[SerializeField] private float m_MaxHandbrakeTorque;//最大刹车扭矩[SerializeField] private float m_Downforce = 100f;//下压力[SerializeField] private SpeedType m_SpeedType;//速度类型[SerializeField] private float m_Topspeed = 200;//最大速度[SerializeField] private static int NoOfGears = 5;//档位总数[SerializeField] private float m_RevRangeBoundary = 1f;//最大滑动距离[SerializeField] private float m_SlipLimit;//轮胎下滑给定的阈值[SerializeField] private float m_BrakeTorque;//刹车扭矩private Quaternion[] m_WheelMeshLocalRotations;//四元数组存储车轮本地转动数据private Vector3 m_Prevpos, m_Pos;private float m_SteerAngle; //转向角private int m_GearNum;//当前档位数private float m_GearFactor;//挡位因子private float m_OldRotation;//用于转动计算private float m_CurrentTorque;//当前扭矩private Rigidbody m_Rigidbody;//刚体private const float k_ReversingThreshold = 0.01f; //反转阈值//角色信息访问控制,对外接口public bool Skidding { get; private set; } //是否打滑public float BrakeInput { get; private set; } //制动输入public float CurrentSteerAngle{ get { return m_SteerAngle; }}//当前车轮角度public float CurrentSpeed{ get { return m_Rigidbody.velocity.magnitude*2.23693629f; }}//当前速度public float MaxSpeed{get { return m_Topspeed; }}//最大速度public float Revs { get; private set; }//转速属性public float AccelInput { get; private set; } //加速输入// Use this for initialization//初始化private void Start(){Transform wheelParent = transform.Find("Colliders/Wheels"); //获得当前车轮碰撞器GameObject wheelMesh = transform.Find("Car/wheel_mesh").gameObject; //获取车轮模型位置for (int i = 0; i < 4; i++){m_WheelColliders[i] = wheelParent.GetChild(i).GetComponent<WheelCollider>();m_WheelMeshes[i] = wheelMesh;}m_WheelMeshLocalRotations = new Quaternion[4]; //获得车轮的四元数的角度信息for (int i = 0; i < 4; i++){m_WheelMeshLocalRotations[i] = m_WheelMeshes[i].transform.localRotation;}m_WheelColliders[0].attachedRigidbody.centerOfMass = m_CentreOfMassOffset;m_MaxHandbrakeTorque = float.MaxValue;m_Rigidbody = GetComponent<Rigidbody>();//当前扭矩=全部扭矩-(牵引系数【0-1】*全部扭矩)//设置当前扭矩,初始化的扭矩值跟m_TractionControl大小有关,m_TractionControl决定是否有牵引力,如果m_TractionControl//值为0,则当前扭矩直接就是最大值,如果该值为1,则初始扭矩为0,然后汽车启动慢慢增加扭矩力。建议m_TractionControl数值为0.5m_CurrentTorque = m_FullTorqueOverAllWheels - (m_TractionControl*m_FullTorqueOverAllWheels);//}//变档函数private void GearChanging(){float f = Mathf.Abs(CurrentSpeed/MaxSpeed);float upgearlimit = (1/(float) NoOfGears)*(m_GearNum + 1);float downgearlimit = (1/(float) NoOfGears)*m_GearNum;if (m_GearNum > 0 && f < downgearlimit){m_GearNum--;}if (f > upgearlimit && (m_GearNum < (NoOfGears - 1))){m_GearNum++;}}//在0-1范围内为值添加一个曲线偏向1的简单函数// simple function to add a curved bias towards 1 for a value in the 0-1 rangeprivate static float CurveFactor(float factor){return 1 - (1 - factor)*(1 - factor);}//松开插值的版本,允许值超出范围// unclamped version of Lerp, to allow value to exceed the from-to rangeprivate static float ULerp(float from, float to, float value){return (1.0f - value)*from + value*to;}//计算齿轮因素/档位因子private void CalculateGearFactor(){float f = (1/(float) NoOfGears);// gear factor is a normalised representation of the current speed within the current gear's range of speeds.// We smooth towards the 'target' gear factor, so that revs don't instantly snap up or down when changing gear.//齿轮因素是在当前齿轮的速度范围的正常表示。我们顺利走向“目标”装备因素,所以转速时不要立即调节或向下改变齿轮。//目标齿轮数=(当前速度/最大速度)*最大齿轮数-当前齿轮数//我们要让值平滑地想着目标移动,以保证转速不会在变换档位时突然地上高或者降低//反向差值,通过当前速度的比例值,找当前速度在当前档位的比例位置,得到的值将是一个0~1范围内的值。var targetGearFactor = Mathf.InverseLerp(f*m_GearNum, f*(m_GearNum + 1), Mathf.Abs(CurrentSpeed/MaxSpeed));//反插值,计算比例值(5,10,8)=(8-5)/(10-5)=3/5m_GearFactor = Mathf.Lerp(m_GearFactor, targetGearFactor, Time.deltaTime*5f); //从当前档位因子向目标档位因子做平滑差值}//计算引擎转速(显示/声音)private void CalculateRevs(){// calculate engine revs (for display / sound)// (this is done in retrospect - revs are not used in force/power calculations)CalculateGearFactor();var gearNumFactor = m_GearNum/(float) NoOfGears;var revsRangeMin = ULerp(0f, m_RevRangeBoundary, CurveFactor(gearNumFactor));var revsRangeMax = ULerp(m_RevRangeBoundary, 1f, gearNumFactor);Revs = ULerp(revsRangeMin, revsRangeMax, m_GearFactor);}//运动函数,最重要public void Move(float steering, float accel, float footbrake, float handbrake){//保持当前轮胎网格跟随wheelcolliders转动for (int i = 0; i < 4; i++){Quaternion quat;//四元数quat,用于旋转Vector3 position;m_WheelColliders[i].GetWorldPose(out position, out quat);//获取wheelcolliders的姿势,位置和转向角//设置网格物体的位置和转向角m_WheelMeshes[i].transform.position = position;m_WheelMeshes[i].transform.rotation = quat;}//clamp input valuessteering = Mathf.Clamp(steering, -1, 1);//限制steering的值在-1和1之间,以下同上AccelInput = accel = Mathf.Clamp(accel, 0, 1);BrakeInput = footbrake = -1*Mathf.Clamp(footbrake, -1, 0);handbrake = Mathf.Clamp(handbrake, 0, 1);//Set the steer on the front wheels.//Assuming that wheels 0 and 1 are the front wheels.//设置前轮转向角,0,1为前轮,汽车行驶时也只是控制前轮转向m_SteerAngle = steering*m_MaximumSteerAngle;m_WheelColliders[0].steerAngle = m_SteerAngle;m_WheelColliders[1].steerAngle = m_SteerAngle;//调用角度辅助助手SteerHelper();//设置加速/刹车信息到WheelColliderApplyDrive(accel, footbrake);//检查速度范围CapSpeed();//Set the handbrake.设置手刹//Assuming that wheels 2 and 3 are the rear wheels.2,3代表后轮if (handbrake > 0f){//设置手刹值到后轮,达到减速目的var hbTorque = handbrake*m_MaxHandbrakeTorque;m_WheelColliders[2].brakeTorque = hbTorque;m_WheelColliders[3].brakeTorque = hbTorque;}//计算转速,用来供外部调用转速属性Revs来播放引擎声音等CalculateRevs();//改变档位GearChanging();//施加下压力AddDownForce();//检查轮胎CheckForWheelSpin();//牵引力控制系统TractionControl();}//检查速度范围private void CapSpeed(){float speed = m_Rigidbody.velocity.magnitude;//将标量速度赋予speed//判断速度类型,switch (m_SpeedType){case SpeedType.MPH:speed *= 2.23693629f;if (speed > m_Topspeed)m_Rigidbody.velocity = (m_Topspeed/2.23693629f) * m_Rigidbody.velocity.normalized;//速度归一化break;case SpeedType.KPH:speed *= 3.6f;if (speed > m_Topspeed)m_Rigidbody.velocity = (m_Topspeed/3.6f) * m_Rigidbody.velocity.normalized;break;}}//设置加速/刹车信息到WheelColliderprivate void ApplyDrive(float accel, float footbrake){float thrustTorque;switch (m_CarDriveType){case CarDriveType.FourWheelDrive:thrustTorque = accel * (m_CurrentTorque / 4f);for (int i = 0; i < 4; i++){m_WheelColliders[i].motorTorque = thrustTorque;}break;case CarDriveType.FrontWheelDrive:thrustTorque = accel * (m_CurrentTorque / 2f);m_WheelColliders[0].motorTorque = m_WheelColliders[1].motorTorque = thrustTorque;break;case CarDriveType.RearWheelDrive:thrustTorque = accel * (m_CurrentTorque / 2f);m_WheelColliders[2].motorTorque = m_WheelColliders[3].motorTorque = thrustTorque;break;}for (int i = 0; i < 4; i++){if (CurrentSpeed > 5 && Vector3.Angle(transform.forward, m_Rigidbody.velocity) < 50f){m_WheelColliders[i].brakeTorque = m_BrakeTorque*footbrake;}else if (footbrake > 0){m_WheelColliders[i].brakeTorque = 0f;m_WheelColliders[i].motorTorque = -m_ReverseTorque*footbrake;}}}//此函数时move函数用于转向角private void SteerHelper(){for (int i = 0; i < 4; i++){WheelHit wheelhit;m_WheelColliders[i].GetGroundHit(out wheelhit);if (wheelhit.normal == Vector3.zero)return; // wheels arent on the ground so dont realign the rigidbody velocity 车轮离地,则不用调整汽车角度了。}// this if is needed to avoid gimbal lock problems that will make the car suddenly shift direction//使用四元数避免万向锁的问题//假如上一次车体Y方向角度比这次小于十度,就根据相差的度数乘以系数m_SteerHelper,得出需要旋转的度数//根据这个度数算出四元数,然后将刚体速度直接旋转这个偏移度数if (Mathf.Abs(m_OldRotation - transform.eulerAngles.y) < 10f){var turnadjust = (transform.eulerAngles.y - m_OldRotation) * m_SteerHelper;Quaternion velRotation = Quaternion.AngleAxis(turnadjust, Vector3.up);m_Rigidbody.velocity = velRotation * m_Rigidbody.velocity;}m_OldRotation = transform.eulerAngles.y;}// this is used to add more grip in relation to speed//这个是用来增加下压力,这是用来添加更多的速度控制private void AddDownForce(){m_WheelColliders[0].attachedRigidbody.AddForce(-transform.up*m_Downforce*m_WheelColliders[0].attachedRigidbody.velocity.magnitude);//Addforce 第一个车轮增加一个力,}// checks if the wheels are spinning and is so does three things 检查轮胎是否旋转// 1) emits particles 是否发射粒子// 2) plays tiure skidding sounds 播放滑行音// 3) leaves skidmarks on the ground 去掉刹车印// these effects are controlled through the WheelEffects class 这些特效都是通过类WheelEffects实现的private void CheckForWheelSpin(){// loop through all wheels 遍历所有车轮for (int i = 0; i < 4; i++){WheelHit wheelHit;m_WheelColliders[i].GetGroundHit(out wheelHit);//获取碰撞信息// is the tire slipping above the given threshhold//轮胎下滑超过给定的阈值吗if (Mathf.Abs(wheelHit.forwardSlip) >= m_SlipLimit || Mathf.Abs(wheelHit.sidewaysSlip) >= m_SlipLimit){//超出则发射烟雾粒子m_WheelEffects[i].EmitTyreSmoke();// avoiding all four tires screeching at the same time// if they do it can lead to some strange audio artefacts//避免四个轮胎都同时播放滑行声音//如果那样的话会导致某些奇怪的音效//函数AnySkidSoundPlaying()是遍历四个轮子,检查是否播放音效,是的返回ture.if (!AnySkidSoundPlaying()){m_WheelEffects[i].PlayAudio();}continue;}// if it wasnt slipping stop all the audio//假如没有超出阈值,还没有停止音效,则停止音效if (m_WheelEffects[i].PlayingAudio){m_WheelEffects[i].StopAudio();}// end the trail generation//停止烟雾生成m_WheelEffects[i].EndSkidTrail();}}//如果汽车轮胎过度滑转,牵引力系统可以控制减少轮胎动力// crude traction control that reduces the power to wheel if the car is wheel spinning too muchprivate void TractionControl()//牵引力控制函数{WheelHit wheelHit;//判断驱动类型,四轮,还是前后轮,然后调用AdjustTorque函数switch (m_CarDriveType){case CarDriveType.FourWheelDrive:// loop through all wheelsfor (int i = 0; i < 4; i++){m_WheelColliders[i].GetGroundHit(out wheelHit);AdjustTorque(wheelHit.forwardSlip);}break;case CarDriveType.RearWheelDrive:m_WheelColliders[2].GetGroundHit(out wheelHit);AdjustTorque(wheelHit.forwardSlip);m_WheelColliders[3].GetGroundHit(out wheelHit);AdjustTorque(wheelHit.forwardSlip);break;case CarDriveType.FrontWheelDrive:m_WheelColliders[0].GetGroundHit(out wheelHit);AdjustTorque(wheelHit.forwardSlip);m_WheelColliders[1].GetGroundHit(out wheelHit);AdjustTorque(wheelHit.forwardSlip);break;}}//当向前滑动距离超过阈值后,就说明轮胎过度滑转,则减少牵引力,以降低转速。上面函数调用private void AdjustTorque(float forwardSlip){if (forwardSlip >= m_SlipLimit && m_CurrentTorque >= 0){m_CurrentTorque -= 10 * m_TractionControl;}else{m_CurrentTorque += 10 * m_TractionControl;if (m_CurrentTorque > m_FullTorqueOverAllWheels){m_CurrentTorque = m_FullTorqueOverAllWheels;}}}//函数AnySkidSoundPlaying()是遍历四个轮子,检查是否播放音效,是的返回ture.上面检查函数调用private bool AnySkidSoundPlaying(){for (int i = 0; i < 4; i++){if (m_WheelEffects[i].PlayingAudio){return true;}}return false;}}}
