样本内的平均
max_index = np.argmax(x,axis=0) # 取每个样本最大值的下标min_index =np.argmin(x,axis= 0)print(len(max_index))print(x[max_index[0]][0])for j in range(x.shape[1]):d =x[max_index[j]][j]-x[min_index[j]][j]# print("num of feature",len(x[0]))for i in range(x.shape[0]):x[i][j] = (x[i][j]-x[min_index[j]][j])/d
样本间的平均
max_index = np.argmax(x,axis=1) # 取每一行的最大值min_index =np.argmin(x,axis=1)for i in range(x.shape[0]):d= x[i][max_index[i]]-x[i][min_index[i]]for j in range(x.shape[1]):x[i][j]=(x[i][j]-x[i][min_index[i]])/d
