def calc_ent(datasets): """计算熵""" data_length = len(datasets) label_count = {} for i in range(data_length): label = datasets[i][-1] if label not in label_count: label_count[label] = 0 label_count[label] += 1 ent = -sum([(p / data_length) * log(p / data_length, 2) for p in label_count.values()]) return entdef cond_ent(datasets, axis=0): """条件熵""" data_length = len(datasets) feature_sets = {} for i in range(data_length): feature = datasets[i][axis] if feature not in feature_sets: feature_sets[feature] = [] feature_sets[feature].append(datasets[i]) cond_ent = sum( [(len(p) / data_length) * calc_ent(p) for p in feature_sets.values()]) return cond_entdef info_gain_train(datasets): count = len(datasets[0]) - 1 ent = calc_ent(datasets)# ent = entropy(datasets) best_feature = [] for c in range(count): c_info_gain = info_gain(ent, cond_ent(datasets, axis=c)) best_feature.append((c, c_info_gain)) print('特征({}) - info_gain - {:.3f}'.format(labels[c], c_info_gain)) # 比较大小 best_ = max(best_feature, key=lambda x: x[-1]) return '特征({})的信息增益最大,选择为根节点特征'.format(labels[best_[0]])
print("-----------------------------------------")print(info_gain_train(np.array(datasets)))print("-----------------------------------------")print("-----------------------------------------")print(info_gain_train(np.array(datasets)))print("-----------------------------------------")
每次分类的信息增益

分类结果如下


决策树如下

