损失函数汇总

官方链接: https://pytorch.org/docs/stable/_modules/torch/nn/modules/loss.html

损失函数 名称 适用场景
torch.nn.MSELoss() 均方误差损失 回归
torch.nn.L1Loss() 平均绝对值误差损失 回归
torch.nn.CrossEntropyLoss() 交叉熵损失 多分类
torch.nn.NLLLoss() 负对数似然函数损失 多分类
torch.nn.NLLLoss2d() 图片负对数似然函数损失 图像分割
torch.nn.KLDivLoss() KL散度损失 回归
torch.nn.BCELoss() 二分类交叉熵损失 二分类
torch.nn.MarginRankingLoss() 评价相似度的损失
torch.nn.MultiLabelMarginLoss() 多标签分类的损失 多标签分类
torch.nn.SmoothL1Loss() 平滑的L1损失 回归
torch.nn.SoftMarginLoss() 多标签二分类问题的损失 多标签二分类

L1损失函数

预测值与标签值进行相差,然后取绝对值,根据实际应用场所,可以设置是否求和,求平均,公式可见下,Pytorch调用函数:nn.L1Loss
image.png

L2损失函数

预测值与标签值进行相差,然后取平方,根据实际应用场所,可以设置是否求和,求平均,公式可见下,Pytorch调用函数:nn.MSELoss
image.png

Huber Loss损失函数

简单来说就是L1和L2损失函数的综合版本,结合了两者的优点,公式可见下,Pytorch调用函数:nn.SmoothL1Loss
image.png

二分类交叉熵损失函数

简单来说,就是度量两个概率分布间的差异性信息,在某一程度上也可以防止梯度学习过慢,公式可见下,Pytorch调用函数有两个,一个是nn.BCELoss函数,用的时候要结合Sigmoid函数,另外一个是nn.BCEWithLogitsLoss()

多分类交叉熵损失函数

也是度量两个概率分布间的差异性信息,Pytorch调用函数也有两个,一个是nn.NLLLoss,用的时候要结合log softmax处理,另外一个是nn.CrossEntropyLoss