7.1 概述

既然我们已经有了前面几个强大的GC,为什么还要发布Garbage First (G1)GC?

  • 原因就在于应用程序所应对的业务越来越庞大、复杂,用户越来越多,没有GC就不能保证应用程序正常进行,而经常造成STW的GC又跟不上实际的需求,所以才会不断地尝试对GC进行优化。G1 ( Garbage-First)垃圾回收器是在Java7 update 4之后引入的一个新的垃圾回收器,是当今收集器技术发展的最前沿成果之一。
  • 与此同时,为了适应现在不断扩大的内存和不断增加的处理器数量,进一步降低暂停时间(pause time) ,同时兼顾良好的吞吐量。
  • 官方给G1设定的目标是在延迟可控的情况下获得尽可能高的吞吐量,所以才担当起“全功能收集器”的重任与期望。

为什么名字叫做Garbage first (G1)呢?

  • 因为G1是一个并行回收器,它把堆内存分割为很多不相关的区域(Region)(物理上不连续的)。使用不同的Region来表示Eden、幸存者0区,幸存者1区,老年代等。
  • G1 GC有计划地避免在整个Java堆中进行全区域的垃圾收集。G1跟踪各个 Region里面的垃圾堆积的价值大小(回收所获得的空间大小以及回收所需时间的经验值),在后台维护一个优先列表,每次根据允许的收集时间,优先回收价值最大的Region.
  • 由于这种方式的侧重点在于回收垃圾最大量的区间(Region),所以我们给G1一个名字:垃圾优先(Garbage First) 。
  • G1 (Garbage-First)是一款面向服务端应用的垃圾收集器,主要针对配备多核CPU及大容量内存的机器,以极高概率满足GC停顿时间的同时,还兼具高吞吐量的性能特征。
  • 在JDK1.7版本正式启用,移除了Experimental的标识,是JDK 9以后的默认垃圾回收器,取代了CMS回收器以及Parallel + Parallel Old组合。被Oracle官方称为“全功能的垃圾收集器”。
  • 与此同时,CMS已经在JDK 9中被标记为废弃(deprecated)。在jdk8中还不是默认的垃圾回收器,需要使用-XX:+UseG1GC来启用。

    7.2 G1回收器的特点(优势)

    与其他GC收集器相比,G1使用了全新的分区算法,其特点如下所示:

  • 并行与并发

并行性:G1在回收期间,可以有多个GC线程同时工作,有效利用多核计算能力。此时用户线程STW
√ 并发性: G1拥有与应用程序交替执行的能力,部分工作可以和应用程序同时执行,因此,一般来说,不会在整个回收阶段发生完全阻塞应用程序的情况

  • 分代收集

√ 从分代上看,G1依然属于分代型垃圾回收器,它会区分年轻代和老年代,年轻代依然有Eden区和Survivor区。但从堆的结构上看,它不要求整个Eden区、年轻代或者老年代都是连续的,也不再坚持固定大小和固定数量。
√ 将堆空间分为若干个区域(Region),这些区域中包含了逻辑上的年轻代。
√ 和老年代和之前的各类回收器不同,它同时兼顾年轻代和老年代。对比其他回收器,或者工作在年轻代,或者工作在老年代;
image.png

  • 空间整合

√ CMS:“标记-清除”算法、内存碎片、若干次GC后进行一次碎片整理
√ G1将内存划分为一个个的region。内存的回收是以region作为基本单位的。Region之间是复制算法,但整体上实际可看作是标记-压缩(Mark-Compact)算法,两种算法都可以避免内存碎片。这种特性有利于程序长时间运行,分配大对象时不会因为无法找到连续内存空间而提前触发下一次GC。尤其是当Java堆非常大的时候,G1的优势更加明显。

  • 可预测的停顿时间模型(即:软实时soft real-time)

这是 G1相对于CMS的另一大优势,G1除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间不得超过M毫秒.
√ 由于分区的原因,G1可以只选取部分区域进行内存回收,这样缩小了回收的范围,因此对于全局停顿情况的发生也能得到较好的控制。
√ G1跟踪各个 Region里面的垃圾堆积的价值大小(回收所获得的空间大小以及回收所需时间的经验值),在后台维护一个优先列表,每次根据允许的收集时间,优先回收价值最大的Region。保证了 G1收集器在有限的时间内可以获取尽可能高的收集效率。
√ 相比于CMS GC ,G1未必能做到CMS在最好情况下的延时停顿,但是最差情况要好很多。

7.3 G1回收器的缺点

  • 相较于CMS,G1还不具备全方位、压倒性优势。比如在用户程序运行过程中,G1无论是为了垃圾收集产生的内存占用(Footprint)还是程序运行时的额外执行负载(Overload)都要比CMS要高。
  • 从经验上来说,在小内存应用上CMS的表现大概率会优于G1,而G1在大内存应用上则发挥其优势。平衡点在6-8GB之间。

    7.4 G1回收器的参数设置

  • -XX:+UseG1GC手动指定使用G1收集器执行内存回收任务。

  • -XX:G1HeapRegionSize设置每个Region的大小。值是2的幂,范围是1MB到32MB之间,目标是根据最小的Java堆大小划分出约2048个区域。默认是堆内存的1/2000。
  • -XX:MaxGCPauseMillis 设置期望达到的最大GC停顿时间指标(JVM会尽力实现,但不保证达到)。默认值是200ms
  • -XX:ParallelGCThread设置STW时GC线程数的值。最多设置为8
  • -XX:ConcGCThreads 设置并发标记的线程数。将n设置为并行垃圾回收线程数(ParallelGcThreads)的1/4左右。
  • -XX:InitiatingHeapoccupancyPercent设置触发并发GC周期的Java堆占用率阈值。超过此值,就触发GC。默认值是45。

JDK8要用G1垃圾回收器,需要自己手动进行设置,JDK9以后默认就是用的G1垃圾回收器
举例:下面时Serial GC等等的设置方式
image.png

7.5 G1回收器的常见操作步骤

G1的设计原则就是简化JVM性能调优,开发人员只需要简单的三步即可完成调优: G1的设计原则就是简化JVM性能调优,开发人员只需要简单的三步即可完成调优:
第一步:开启G1垃圾收集器
第二步:设置堆的最大内存
第三步:设置最大的停顿时间
G1中提供了三种垃圾回收模式: YoungGC、Mixed GC和Full GC,在不同的条件下被触发。 G1中提供了三种垃圾回收模式: YoungGC、Mixed GC和Full GC,在不同的条件下被触发。

7.6 G1回收器的适用场景

  • 面向服务端应用,针对具有大内存、多处理器的机器。(在普通大小的堆里表现并不惊喜)
  • 最主要的应用是需要低GC延迟,并具有大堆的应用程序提供解决方案;
  • 如:在堆大小约6GB或更大时,可预测的暂停时间可以低于0.5秒;(G1通过每次只清理一部分而不是全部的Region的增量式清理来保证每次GC停顿时间不会过长)。
  • 用来替换掉JDK1.5中的CMS收集器;

在下面的情况时,使用G1可能比CMS好:
①超过50%的Java堆被活动数据占用;
②对象分配频率或年代提升频率变化很大;
③GC停顿时间过长(长于0.5至1秒)。

  • HotSpot垃圾收集器里,除了G1以外,其他的垃圾收集器使用内置的JVM线程执行GC的多线程操作,而G1 GC可以采用应用线程承担后台运行的GC工作,即当JVM的GC线程处理速度慢时,系统会调用应用程序线程帮助加速垃圾回收过程。

    7.7 分区Region:化整为零

  • 使用G1收集器时,它将整个Java堆划分成约2048个大小相同的独立Region块,每个Region块大小根据堆空间的实际大小而定,整体被控制在1MB到32MB之间,且为2的N次幂,即1MB,2MB,4MB,8MB,16MB,32MB。可以通过-XX:G1HeapRegionsize设定。所有的Region大小相同,且在JVM生命周期内不会被改变。

  • 虽然还保留有新生代和老年代的概念,但新生代和老年代不再是物理隔离的了,它们都是一部分Region(不需要连续)的集合。通过Region的动态分配方式实现逻辑上的连续。

image.png

  • 一个region 有可能属于 Eden,survivor或者 Old/Tenured 内存区域。但是一个region只可能属于一个角色。图中的E表示该region属于Eden内存区域,S表示属于survivor内存区域,O表示属于Old内存区域。图中空白的表示未使用的内存空间。
  • G1垃圾收集器还增加了一种新的内存区域,叫做 Humongous内存区域,如图中的 H块。主要用于存储大对象,如果超过1.5个region,就放到H。
  • 设置H的原因

对于堆中的大对象,默认直接会被分配到老年代,但是如果它是一个短期存在的大对象,就会对垃圾收集器造成负面影响。为了解决这个问题,G1划分了一个Humongous区,它用来专门存放大对象。如果一个H区装不下一个大对象,那么G1会寻找连续的H区来存储。为了能找到连续的H区,有时候不得不启动Full GC。G1的大多数行为都把H区作为老年代的一部分来看待。
image.png

7.8 G1回收器垃圾回收过程

G1 GC的垃圾回收过程主要包括如下三个环节:

  • 年轻代GC (Young GC)
  • 老年代并发标记过程(Concurrent Marking)
  • 混合回收(Mixed GC)
  • (如果需要,单线程、独占式、高强度的Full GC还是继续存在的。它针对GC的评估失败提供了一种失败保护机制,即强力回收。)

正常情况下是不会出现Full GC,如果出现就行进行调优,避免出现Full GC。
image.png
顺时针,young gc -> young gc + concurrent mark -> Mixed GC顺序,进行垃圾回收。

  • 应用程序分配内存,当年轻代的Eden区用尽时开始年轻代回收过程;G1的年轻代收集阶段是一个并行的独占式收集器。在年轻代回收期,G1 GC暂停所有应用程序线程,启动多线程执行年轻代回收。然后从年轻代区间移动存活对象到Survivor区间或者老年区间,也有可能是两个区间都会涉及。
  • 当堆内存使用达到一定值(默认45%)时,开始老年代并发标记过程。
  • 标记完成马上开始混合回收过程。对于一个混合回收期,G1 GC从老年区间移动存活对象到空闲区间,这些空闲区间也就成为了老年代的一部分。和年轻代不同,老年代的G1回收器和其他GC不同,G1的老年代回收器不需要整个老年代被回收,一次只需要扫描/回收小部分老年代的Region就可以了。同时,这个老年代Region是和年轻代一起被回收的
  • 举个例子:一个web服务器,Java进程最大堆内存为4G,每分钟响应1500个请求,每45秒钟会新分配大约2G的内存。G1会每45秒钟进行一次年轻代回收,每31个小时整个堆的使用率会达到45%,会开始老年代并发标记过程,标记完成后开始四到五次的混合回收。

    7.9 Remembered Set(记忆集)

    G1相比CMS还要额外占据10%-20%的存储空间,这部分空间就是用于Remembered Set,在进行Young GC的时候年轻代和老年代区域的对象可能存在相互引用的情况,在对Eden和Survivor区进行遍历的时候,可能老年代有引用指向新生代,这样Old区也要进行遍历,这样效率就会变得非常低,这个时候才有Remembered Set

  • 一个对象被不同区域引用的问题

  • 一个Region不可能是孤立的,一个Region中的对象可能被其他任意Region中对象引用,判断对象存活时,是否需要扫描整个java堆才能保证准确?
  • 在其他的分代收集器,也存在这样的问题(而G1更突出)
  • 回收新生代也不得不同时扫描老年代?
  • 这样的话会降低Minor GC的效率;
  • 解决办法

√ 无论G1还是其他分代收集器,JVM都是使用Remembered Set来避免全局扫描:
√ 每个Region都有一个对应的Remembered set;
√ 每次Reference类型数据写操作时,都会产生一个Write Barrier暂时中断操作;
√ 然后检查将要写入的引用指向的对象是否和该Reference类型数据在不同的Region(其他收集器:检查老年代对象是否引用了新生代对象);
√ 如果不同,通过cardTable把相关引用信息记录到引用指向对象的所在Region对应的Remembered Set中;
√ 当进行垃圾收集时,在GC根节点的枚举范围加入Remembered Set;就可以保证不进行全局扫描,也不会有遗漏。
image.png

7.10 G1回收过程一:年轻代GC

  • JVM启动时,G1先准备好Eden区,程序在运行过程中不断创建对象到Eden区,当Eden空间耗尽时,G1会启动一次年轻代垃圾回收过程。
  • 年轻代垃圾回收只会回收Eden区和Survivor区。
  • YGC时,首先G1停止应用程序的执行(Stop-The-world) ,G1创建回收集(Collection Set),回收集是指需要被回收的内存分段的集合,年轻代回收过程的回收集包含年轻代Eden区和Survivor区所有的内存分段。

image.png
然后开始如下回收过程:
第一阶段,扫描根
根是指static变量指向的对象,正在执行的方法调用链条上的局部变量等。根引用连同RSet记录的外部引用作为扫描存活对象的入口。
第二阶段,更新RSet
处理dirty card queue(脏卡表)中的card,更新RSet。此阶段完成后,RSet可以准确的反映老年代对所在的内存分段中对象的引用。
什么是脏卡表:
对于应用程序的引用赋值语句object.field=object ,JVM会在之前和之后执行特殊的操作以在dirty card queue中入队一个保存了对象引用信息的card。在年轻代回收的时候,G1会对Dirty Card Queue中所有的card进行处理,以更新RSet,保证RSet实时准确的反映引用关系。那为什么不在引用赋值语句处直接更新RSet呢?这是为了性能的需要,RSet的处理需要线程同步,开销会很大,使用队列性能会好很多。
第三阶段,处理RSet
识别被老年代对象指向的Eden中的对象,这些被指向的Eden中的对象被认为是存活的对象。
第四阶段,复制对象
此阶段,对象树被遍历,Eden区内存段中存活的对象会被复制到survivor区中空的内存分段,Survivor区内存段中存活的对象如果年龄未达阈值,年龄会加1,达到阀值会被会被复制到old区中空的内存分段。如果Survivor空间不够,Eden空间的部分数据会直接晋升到老年代空间。
第五阶段,处理引用
处理Soft,Weak,Phantom,Final,JNI Weak 等引用。最终Eden空间的数据为空,GC停止工作,而目标内存中的对象都是连续存储的,没有碎片,所以复制过程可以达到内存整理的效果,减少碎片。

7.11 G1回收过程二:并发标记过程

1.初始标记阶段: 标记从根节点直接可达的对象。这个阶段是STW的,并且会触发一年轻代GC。
2.根区域扫描(Root Region Scanning) : G1 GC扫描Survivor区直接可达的老年代区域对象,并标记被引用的对象。这一过程必须在young GC之前完成。
3. 并发标记(Concurrent Marking): 在整个堆中进行并发标记(和应用程序并发执行此过程可能被young GC中断。在并发标记阶段,若发现区域对象中的所有对象都是垃圾,那这个区域会被立即回收。同时,并发标记过程中,会计算每个区域的对象活性(区域存活对象的比例)。
4. 再次标记(Remark): 由于应用程序持续进行,需要修正上一次的标记结果。是STW的。G1中采用了比CMS更快的初始快照算法:snapshot-at-the-beginning (SATB)。
5. 独占清理(cleanup,STW): 计算各个区域的存活对象和GC回收比例,并进行排序识别可以混合回收的区域。为下阶段做铺垫。是STW的。
√ 这个阶段并不会实际上去做垃圾的收集
6. 并发清理阶段: 识别并清理完全空闲的区域。

7.12 G1回收过程三:混合回收

当越来越多的对象晋升到老年代Old Region时,为了避免堆内存被耗尽,虚拟机会触发一个混合的垃圾收集器,即Mixed GC,该算法并不是一个Old GC,除了回收整个Young Region,还会回收一部分的Old Region。这里需要注意:是一部分老年代,而不是全部老年代。可以选择哪些Old Region进行收集,从而可以对垃圾回收的耗时时间进行控制。也要注意的是Mixed GC并不是Full GC。
image.png

  • 并发标记结束以后,老年代中百分百为垃圾的内存分段被回收了,部分为垃圾的内存分段被计算了出来。默认情况下,这些老年代的内存分段会分8次(可以通过-XX:G1MixedGCCountTarget设置)被回收。
  • 混合回收的回收集(Collection Set)包括八分之一的老年代内存分段,Eden区内存分段,Survivor区内存分段。混合回收的算法和年轻代回收的算法完全一样,只是回收集多了老年代的内存分段。具体过程请参考上面的年轻代回收过程。
  • 由于老年代中的内存分段默认分8次回收,G1会优先回收垃圾多的内存分段。垃圾占内存分段比例越高的,越会被先回收。并且有一个阈值会决定内存分段是否被回收,-XX:G1MixedGCLiveThresholdPercent,默认为65%,意思是垃圾占内存分段比例要达到65%才会被回收。如果垃圾占比太低,意味着存活的对象占比高,在复制的时候会花费更多的时间。
  • 混合回收并不一定要进行8次。有一个阈值-XX:G1 HeapWastePercent,默认值为10%,意思是允许整个堆内存中有10%的空间被浪费,意味着如果发现可以回收的垃圾占堆内存的比例低于10%,则不再进行混合回收。因为GC会花费很多的时间但是回收到的内存却很少。

    7.13 G1回收可选的过程四:Full GC

  • G1的初衷就是要避免Full GC的出现。但是如果上述方式不能正常工作,G1会停止应用程序的执行(stop-The-world),使用单线程的内存回收算法进行垃圾回收,性能会非常差,应用程序停顿时间会很长。

  • 要避免Full GC的发生,一旦发生需要进行调整。什么时候会发生Full GC呢?比如堆内存太小,当G1在复制存活对象的时候没有空的内存分段可用,则会回退到Full GC,这种情况可以通过增大内存解决。
  • 导致G1Full Gc的原因可能有两个:
  1. Evacuation的时候没有足够的to-space来存放晋升的对象;
    2.并发处理过程完成之前空间耗尽。

    7.14 G1回收过程:补充

    从oracle官方透露出来的信息可获知,回收阶段(Evacuation)其实本也有想过设计成与用户程序一起并发执行,但这件事情做起来比较复杂,考虑到G1只是回收一部分Region,停顿时间是用户可控制的,所以并不迫切去实现,而选择把这个特性放到了G1之后出现的低延迟垃圾收集器(即ZGC)中。另外,还考虑到G1不是仅仅面向低延迟,停顿用户线程能够最大幅度提高垃圾收集效率,为了保证吞吐量所以才选择了完全暂停用户线程的实现方案。
    G1回收器优化建议
  • 年轻代大小

√ 避免使用-Xmn或-XX:NewRatio等相关选项显式设置年轻代大小
√ 固定年轻代的大小会覆盖暂停时间目标

  • 暂停时间目标不要太过严苛

√ G1 GC的吞吐量目标是90%的应用程序时间和10%的垃圾回收时间
√ 评估G1 GC的吞吐量时,暂停时间目标不要太严苛。目标太过严苛表示你愿意承受更多的垃圾回收开销,而这些会直接影响到吞吐量。

8. 垃圾回收器总结

截止JDK 1.8,一共有7款不同的垃圾收集器。每一款不同的垃圾收集器都有不同的特点,在具体使用的时候,需要根据具体的情况选用不同的垃圾收集器。
image.png
image.png

8.1 垃圾回收器组合

不同厂商、不同版本的虚拟机实现差别很大。HotSpot虚拟机在JDK7/8后所有收集器及组合(连线),如下图:(更新到了JDK14)。
虚线是被放弃的组合
image.png
1.两个收集器间有连线,表明它们可以搭配使用:
serial/serial old、serial/CMS、ParNew/Serial old、ParNew/CMS、Parallel Scavenge/serial old、Parallel Scavenge/Parallel old、G1;
2.其中serial old作为CMS出现”Concurrent Mode Failure”失败的后备预案。
3.(红色虚线)由于维护和兼容性测试的成本,在JDK 8时将Serial+CMS、ParNew+Serial old这两个组合声明为Deprecated (JEP 173),并在JDK 9中完全取消了这些组合的支持(JEP214),即:移除。
4.(绿色虚线)JDK 14中:弃用Parallelscavenge和SerialOld GC组合(JEP 366)
5.(青色虚线)JDK 14中:删除CMS垃圾回收器(JEP 363)

8.2 如何选择垃圾回收器

  • Java垃圾收集器的配置对于JVM优化来说是一个很重要的选择,选择合适的垃圾收集器可以让JVM的性能有一个很大的提升。
  • 怎么选择垃圾收集器?

1.优先调整堆的大小让JVM自适应完成。
2.如果内存小于100M,使用串行收集器
3.如果是单核、单机程序,并且没有停顿时间的要求,串行收集器
4.如果是多CPU、需要高吞吐量、允许停顿时间超过1秒,选择并行或者JVM自己选择
5. 如果是多CPU、追求低停顿时间,需快速响应(比如延迟不能超过1秒,如互联网应用),使用并发收集器
官方推荐G1,性能高。现在互联网的项目,基本都是使用G1。
最后需要明确一个观点:
1. 没有最好的收集器,更没有万能的收集;
2. 调优永远是针对特定场景、特定需求,不存在一劳永逸的收集器
面试

  • 对于垃圾收集,面试官可以循序渐进从理论、实践各种角度深入,也未必是要求面试者什么都懂。但如果你懂得原理,一定会成为面试中的加分项。这里较通用、基础性的部分如下:

√ 垃圾收集的算法有哪些?如何判断一个对象是否可以回收?
√ 垃圾收集器工作的基本流程。

  • 另外,大家需要多关注垃圾回收器这一章的各种常用的参数。