大家看到,后缀表达式适合计算式进行运算,但是人却不太容易写出来,尤其是表达式很长的情况下,因此在开发中,我们需要将 中缀表达式转成后缀表达式。
具体步骤如下:
- 初始化两个栈:运算符栈s1和储存中间结果的栈s2;
- 从左至右扫描中缀表达式;
- 遇到操作数时,将其压s2;
- 遇到运算符时,比较其与s1栈顶运算符的优先级:
- 如果s1为空,或栈顶运算符为左括号“(”,则直接将此运算符入栈;
- 否则,若优先级比栈顶运算符的高,也将运算符压入s1;
- 否则,将s1栈顶的运算符弹出并压入到s2中,再次转到(4-1)与s1中新的栈顶运算符相比较;
- 遇到括号时:(1) 如果是左括号“(”,则直接压入s1(2) 如果是右括号“)”,则依次弹出s1栈顶的运算符,并压入s2,直到遇到左括号为止,此时将这一对括号丢弃
- 重复步骤2至5,直到表达式的最右边
- 将s1中剩余的运算符依次弹出并压入s2
- 依次弹出s2中的元素并输出,结果的逆序即为中缀表达式对应的后缀表达式

举例说明:
将中缀表达式“1+((2+3)×4)-5”转换为后缀表达式的过程如下
因此结果为
"1 2 3 + 4 × + 5 –"
| 扫描到的元素 | s2(栈底->栈顶) | s1 (栈底->栈顶) | 说明 | | —- | —- | —- | —- |
| 1 | 1 | 空 | 数字,直接入栈 |
| + | 1 | + | s1为空,运算符直接入栈 |
| ( | 1 | + ( | 左括号,直接入栈 |
| ( | 1 | + ( ( | 同上 |
| 2 | 1 2 | + ( ( | 数字 |
| + | 1 2 | + ( ( + | s1栈顶为左括号,运算符直接入栈 |
| 3 | 1 2 3 | + ( ( + | 数字 |
| ) | 1 2 3 + | + ( | 右括号,弹出运算符直至遇到左括号 |
| × | 1 2 3 + | + ( × | s1栈顶为左括号,运算符直接入栈 |
| 4 | 1 2 3 + 4 | + ( × | 数字 |
| ) | 1 2 3 + 4 × | + | 右括号,弹出运算符直至遇到左括号 |
| - | 1 2 3 + 4 × + | - | -与+优先级相同,因此弹出+,再压入- |
| 5 | 1 2 3 + 4 × + 5 | - | 数字 |
| 到达最右端 | 1 2 3 + 4 × + 5 - | 空 | s1中剩余的运算符 |
代码实现
完整代码
package com.atguigu.stack;/*** ClassName: <br/>* Description: <br/>* Date: 2021-02-20 14:27 <br/>* @project data_algorithm* @package com.atguigu.stack*/import java.util.ArrayList;import java.util.List;import java.util.Stack;public class PolandNotation {public static void main(String[] args) {//完成将一个中缀表达式转成后缀表达式的功能//说明//1. 1+((2+3)×4)-5 => 转成 1 2 3 + 4 × + 5 –//2. 因为直接对str 进行操作,不方便,因此 先将 "1+((2+3)×4)-5" =》 中缀的表达式对应的List// 即 "1+((2+3)×4)-5" => ArrayList [1,+,(,(,2,+,3,),*,4,),-,5]//3. 将得到的中缀表达式对应的List => 后缀表达式对应的List// 即 ArrayList [1,+,(,(,2,+,3,),*,4,),-,5] =》 ArrayList [1,2,3,+,4,*,+,5,–]String expression = "1+((2+3)*4)-5";//注意表达式List<String> infixExpressionList = toInfixExpressionList(expression);System.out.println("中缀表达式对应的List=" + infixExpressionList); // ArrayList [1,+,(,(,2,+,3,),*,4,),-,5]List<String> suffixExpreesionList = parseSuffixExpreesionList(infixExpressionList);System.out.println("后缀表达式对应的List" + suffixExpreesionList); //ArrayList [1,2,3,+,4,*,+,5,–]System.out.printf("expression=%d", calculate(suffixExpreesionList)); // ?/*//先定义给逆波兰表达式//(30+4)×5-6 => 30 4 + 5 × 6 - => 164// 4 * 5 - 8 + 60 + 8 / 2 => 4 5 * 8 - 60 + 8 2 / +//测试//说明为了方便,逆波兰表达式 的数字和符号使用空格隔开//String suffixExpression = "30 4 + 5 * 6 -";String suffixExpression = "4 5 * 8 - 60 + 8 2 / +"; // 76//思路//1. 先将 "3 4 + 5 × 6 - " => 放到ArrayList中//2. 将 ArrayList 传递给一个方法,遍历 ArrayList 配合栈 完成计算List<String> list = getListString(suffixExpression);System.out.println("rpnList=" + list);int res = calculate(list);System.out.println("计算的结果是=" + res);*/}//即 ArrayList [1,+,(,(,2,+,3,),*,4,),-,5] =》 ArrayList [1,2,3,+,4,*,+,5,–]//方法:将得到的中缀表达式对应的List => 后缀表达式对应的Listpublic static List<String> parseSuffixExpreesionList(List<String> ls) {//定义两个栈Stack<String> s1 = new Stack<String>(); // 符号栈//说明:因为s2 这个栈,在整个转换过程中,没有pop操作,而且后面我们还需要逆序输出//因此比较麻烦,这里我们就不用 Stack<String> 直接使用 List<String> s2//Stack<String> s2 = new Stack<String>(); // 储存中间结果的栈s2List<String> s2 = new ArrayList<String>(); // 储存中间结果的Lists2//遍历lsfor(String item: ls) {//如果是一个数,加入s2if(item.matches("\\d+")) {s2.add(item);} else if (item.equals("(")) {s1.push(item);} else if (item.equals(")")) {//如果是右括号“)”,则依次弹出s1栈顶的运算符,并压入s2,直到遇到左括号为止,此时将这一对括号丢弃while(!s1.peek().equals("(")) {s2.add(s1.pop());}s1.pop();//!!! 将 ( 弹出 s1栈, 消除小括号} else {//当item的优先级小于等于s1栈顶运算符, 将s1栈顶的运算符弹出并加入到s2中,再次转到(4.1)与s1中新的栈顶运算符相比较//问题:我们缺少一个比较优先级高低的方法while(s1.size() != 0 && Operation.getValue(s1.peek()) >= Operation.getValue(item) ) {s2.add(s1.pop());}//还需要将item压入栈s1.push(item);}}//将s1中剩余的运算符依次弹出并加入s2while(s1.size() != 0) {s2.add(s1.pop());}return s2; //注意因为是存放到List, 因此按顺序输出就是对应的后缀表达式对应的List}//方法:将 中缀表达式转成对应的List// s="1+((2+3)×4)-5";public static List<String> toInfixExpressionList(String s) {//定义一个List,存放中缀表达式 对应的内容List<String> ls = new ArrayList<String>();int i = 0; //这时是一个指针,用于遍历 中缀表达式字符串String str; // 对多位数的拼接char c; // 每遍历到一个字符,就放入到cdo {//如果c是一个非数字,我需要加入到lsif((c=s.charAt(i)) < 48 || (c=s.charAt(i)) > 57) {ls.add("" + c);i++; //i需要后移} else { //如果是一个数,需要考虑多位数str = ""; //先将str 置成"" '0'[48]->'9'[57]while(i < s.length() && (c=s.charAt(i)) >= 48 && (c=s.charAt(i)) <= 57) {str += c;//拼接i++;}ls.add(str);}}while(i < s.length());return ls;//返回}//将一个逆波兰表达式, 依次将数据和运算符 放入到 ArrayList中public static List<String> getListString(String suffixExpression) {//将 suffixExpression 分割String[] split = suffixExpression.split(" ");List<String> list = new ArrayList<String>();for(String ele: split) {list.add(ele);}return list;}//完成对逆波兰表达式的运算/** 1)从左至右扫描,将3和4压入堆栈;2)遇到+运算符,因此弹出4和3(4为栈顶元素,3为次顶元素),计算出3+4的值,得7,再将7入栈;3)将5入栈;4)接下来是×运算符,因此弹出5和7,计算出7×5=35,将35入栈;5)将6入栈;6)最后是-运算符,计算出35-6的值,即29,由此得出最终结果*/public static int calculate(List<String> ls) {// 创建给栈, 只需要一个栈即可Stack<String> stack = new Stack<String>();// 遍历 lsfor (String item : ls) {// 这里使用正则表达式来取出数if (item.matches("\\d+")) { // 匹配的是多位数// 入栈stack.push(item);} else {// pop出两个数,并运算, 再入栈int num2 = Integer.parseInt(stack.pop());int num1 = Integer.parseInt(stack.pop());int res = 0;if (item.equals("+")) {res = num1 + num2;} else if (item.equals("-")) {res = num1 - num2;} else if (item.equals("*")) {res = num1 * num2;} else if (item.equals("/")) {res = num1 / num2;} else {throw new RuntimeException("运算符有误");}//把res 入栈stack.push("" + res);}}//最后留在stack中的数据是运算结果return Integer.parseInt(stack.pop());}}//编写一个类 Operation 可以返回一个运算符 对应的优先级class Operation {private static int ADD = 1;private static int SUB = 1;private static int MUL = 2;private static int DIV = 2;//写一个方法,返回对应的优先级数字public static int getValue(String operation) {int result = 0;switch (operation) {case "+":result = ADD;break;case "-":result = SUB;break;case "*":result = MUL;break;case "/":result = DIV;break;default:System.out.println("不存在该运算符" + operation);break;}return result;}}
