21.1 软件定时器的基本概念
定时器,是指从指定的时刻开始,经过一个指定时间,然后触发一个超时事件,用户可以自定义定时器的周期与频率。类似生活中的闹钟,我们可以设置闹钟每天什么时候响,还能设置响的次数,是响一次还是每天都响。
定时器有硬件定时器和软件定时器之分:
硬件定时器:芯片本身提供的定时功能。一般是由外部晶振提供给芯片输入时钟,芯片向软件模块提供一组配置寄存器,接受控制输入,到达设定时间值后芯片中断控制器产生时钟中断。硬件定时器的精度一般很高,可以达到纳秒级别,并且是中断触发方式。
软件定时器:软件定时器是由操作系统提供的一类系统接口,它构建在硬件定时器基础之上,使系统能够提供不受硬件定时器资源限制的定时器服务,它实现的功能与硬件定时器也是类似的。
使用硬件定时器时,每次在定时时间到达之后就会自动触发一个中断,用户在中断中处理信息;而使用软件定时器时,需要我们在创建软件定时器时指定时间到达后要调用的函数(也称超时函数/回调函数,为了统一,下文均用回调函数描述),在回调函数中处理信息。
注意:软件定时器回调函数的上下文是任务, 下文所说的定时器均为软件定时器。
软件定时器在被创建之后,当经过设定的时钟计数值后会触发用户定义的回调函数。定时精度与系统时钟的周期有关。一般系统利用 SysTick 作为软件定时器的基础时钟, 软件定时器的回调函数类似硬件的中断服务函数,所以, 回调函数也要快进快出,而且回调函数中不能有任何阻塞任务运行的情况(软件定时器回调函数的上下文环境是任务) ,比如 vTaskDelay()以及 其它能阻 塞任务运 行的函数 ,两次触发 回调函数 的时间间隔xTimerPeriodInTicks 叫定时器的定时周期。
特点:
- 裁剪:能通过宏关闭软件定时器功能。
- 软件定时器创建。
- 软件定时器启动。
- 软件定时器停止。
- 软件定时器复位。
软件定时器删除。
FreeRTOS 提供的软件定时器支持单次模式和周期模式, 单次模式和周期模式的定时时间到之后都会调用软件定时器的回调函数,用户可以在回调函数中加入要执行的工程代码。
单次模式:当用户创建了定时器并启动了定时器后,定时时间到了,只执行一次回调函数之后就将该定时器进入休眠状态,不再重新执行。
周期模式:这个定时器会按照设置的定时时间循环执行回调函数,直到用户将定时器删除。
FreeRTOS 通过一个 prvTimerTask 任务(也叫守护任务 Daemon)管理软定时器,它是在启动调度器时自动创建的, 为了满足用户定时需求。 prvTimerTask 任务会在其执行期间检查用户启动的时间周期溢出的定时器,并调用其回调函数。 只有设置 FreeRTOSConfig.h中的宏定义 configUSE_TIMERS 设置为 1 ,将相关代码编译进来,才能正常使用软件定时器相关功能。
21.2 软件定时器应用场景
我们需要一些定时器任务,硬件定时器受硬件的限制,数量上不足以满足用户的实际需求,无法提供更多的定时器,那么可以采用软件定时器来完成,由软件定时器代替硬件定时器任务。 但需要注意的是软件定时器的精度是无法和硬件定时器相比的, 而且在软件定时器的定时过程中是极有可能被其它中断所打断,因为软件定时器的执行上下文环境是任务。所以,软件定时器更适用于对时间精度要求不高的任务,一些辅助型的任务。
21.3 软件定时器的精度
系统节拍是系统的心跳节拍,表示系统时钟的频率,就类似人的心跳, 1s 能跳动多少下,系统节拍配置为configTICK_RATE_HZ,该宏在 FreeRTOSConfig.h 中有定义,默认是 1000。那么系统的时钟节拍周期就为 1ms(1s 跳动 1000 下,每一下就为 1ms)。
注意:软件定时器的所定时数值必须是这个节拍周期的整数倍,例如节拍周期是 10ms,那么上层软件定时器定时数值只能是10ms, 20ms, 100ms 等,而不能取值为 15ms。 精度越高,但是系统开销也将越大,因为这代表在 1 秒中系统进入时钟中断的次数也就越多。
21.4 软件定时器的运作机制
软件定时器是可选的系统资源,在创建定时器的时候会分配一块内存空间。当用户创建并启动一个软件定时器时, FreeRTOS 会根据当前系统时间及用户设置的定时确定该定时器唤醒时间,并将该定时器控制块挂入软件定时器列表, FreeRTOS 中采用两个定时器列表维护软件定时器, pxCurrentTimerList 与 pxOverflowTimerList 是列表指针, 在初始化的时候分别指向 xActiveTimerList1 与 xActiveTimerList2,
PRIVILEGED_DATA static List_t xActiveTimerList1;
PRIVILEGED_DATA static List_t xActiveTimerList2;
PRIVILEGED_DATA static List_t *pxCurrentTimerList;
PRIVILEGED_DATA static List_t *pxOverflowTimerList;
pxCurrentTimerList: 系统新创建并激活的定时器都会以超时时间升序的方式插入到pxCurrentTimerList 列表中。系统在定时器任务中扫描 pxCurrentTimerList 中的第一个定时器,看是否已超时,若已经超时了则调用软件定时器回调函数。否则将定时器任务挂起,因为定时时间是升序插入软件定时器列表的,列表中第一个定时器的定时时间都还没到的话,那后面的定时器定时时间自然没到。
pxOverflowTimerList 列表是在软件定时器溢出的时候使用, 作用与 pxCurrentTimerList一致。
FreeRTOS 的软件定时器还有采用消息队列进行通信, 利用“定时器命令队列”向软件定时器任务发送一些命令,任务在接收到命令就会去处理命令对应的程序,比如启动定时器,停止定时器等。假如定时器任务处于阻塞状态,我们又需要马上再添加一个软件定时器的话,就是采用这种消息队列命令的方式进行添加,才能唤醒处于等待状态的定时器任务,并且在任务中将新添加的软件定时器添加到软件定时器列表中,所以,在定时器启动函数中, FreeRTOS 是采用队列的方式发送一个消息给软件定时器任务,任务被唤醒从而执行接收到的命令。
举例理解:
系统当前时间 xTimeNow 值为 0,注意: xTimeNow 其实是一个局部变量, 是根据 xTaskGetTickCount()函数获取的,实际它的值就是全局变量 xTickCount 的值,下文都采用它表示当前系统时间。
在当前系统中已经创建并启动了 1 个定时器 Timer1;系统继续运行,当系统的时间 xTimeNow 为 20 的时候,用户创建并且启动一个定时时间为 100 的定时器 Timer2,此时Timer2 的 溢出时间 xTicksToWait 就为定时时间 +系统 当前时间(100+20=120),然后将 Timer2 按 xTicksToWait 升序插入软件定时器列表中;假设当前系统时间 xTimeNow 为 40 的时候,用户创建并且启动了一个定时时间为 50 的定时器Timer3 , 那么此时Timer3 的 溢 出 时 间 xTicksToWait 就 为 40+50=90 , 同 样 安 装xTicksToWait 的数值升序插入软件定时器列表中,在定时器链表中插入过程具体见图。同理创建并且启动在已有的两个定时器中间的定时器也是一样的。
上图为例:说明回调过程(主要区别是是否有周期)
在创建定 Timer1 并且启动后,假如系统经过了 50 个 tick, xTimeNow 从 0增长到 50,与 Timer1 的 xTicksToWait 值相等, 这时会触发与 Timer1 对应的回调函数,从而转到回调函数中执行用户代码,同时将 Timer1 从软件定时器列表删除,如果软件定时器是周期性的,那么系统会根据 Timer1 下一次唤醒时间重新将 Timer1 添加到软件定时器列表中,按照 xTicksToWait 的升序进行排列。同理,在 xTimeNow=40 的时候创建的 Timer3,在经过 130 个 tick 后(此时系统时间 xTimeNow 是 40, 130 个 tick 就是系统时间
xTimeNow 为 170 的时候),与 Timer3 定时器对应的回调函数会被触发,接着将 Timer3 从软件定时器列中删除,如果是周期性的定时器,还会按照 xTicksToWait 升序重新添加到软件定时器列表中。
注意点:
- 快进快出,不要阻塞、不能死循环
- 为了更好相应,会设置成最高优先级
- 单词软件定时器,完成回调后,系统会接收资源
- 定时器任务的堆栈大小默认为 configTIMER_TASK_STACK_DEPTH 个字节