Indexing and selecting data

The axis labeling information in pandas objects serves many purposes:

  • Identifies data (i.e. provides metadata) using known indicators, important for analysis, visualization, and interactive console display.
  • Enables automatic and explicit data alignment.
  • Allows intuitive getting and setting of subsets of the data set.

In this section, we will focus on the final point: namely, how to slice, dice, and generally get and set subsets of pandas objects. The primary focus will be on Series and DataFrame as they have received more development attention in this area.

::: tip Note

The Python and NumPy indexing operators [] and attribute operator . provide quick and easy access to pandas data structures across a wide range of use cases. This makes interactive work intuitive, as there’s little new to learn if you already know how to deal with Python dictionaries and NumPy arrays. However, since the type of the data to be accessed isn’t known in advance, directly using standard operators has some optimization limits. For production code, we recommended that you take advantage of the optimized pandas data access methods exposed in this chapter.

:::

::: danger Warning

Whether a copy or a reference is returned for a setting operation, may depend on the context. This is sometimes called chained assignment and should be avoided. See Returning a View versus Copy.

:::

::: danger Warning

Indexing on an integer-based Index with floats has been clarified in 0.18.0, for a summary of the changes, see here.

:::

See the MultiIndex / Advanced Indexing for MultiIndex and more advanced indexing documentation.

See the cookbook for some advanced strategies.

Different choices for indexing

Object selection has had a number of user-requested additions in order to support more explicit location based indexing. Pandas now supports three types of multi-axis indexing.

  • .loc is primarily label based, but may also be used with a boolean array. .loc will raise KeyError when the items are not found. Allowed inputs are:

    • A single label, e.g. 5 or 'a' (Note that 5 is interpreted as a label of the index. This use is not an integer position along the index.).
    • A list or array of labels ['a', 'b', 'c'].
    • A slice object with labels 'a':'f' (Note that contrary to usual python slices, both the start and the stop are included, when present in the index! See Slicing with labels and Endpoints are inclusive.)
    • A boolean array
    • A callable function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above).

    New in version 0.18.1.

    See more at Selection by Label.

  • .iloc is primarily integer position based (from 0 to length-1 of the axis), but may also be used with a boolean array. .iloc will raise IndexError if a requested indexer is out-of-bounds, except slice indexers which allow out-of-bounds indexing. (this conforms with Python/NumPy slice semantics). Allowed inputs are:

    • An integer e.g. 5.
    • A list or array of integers [4, 3, 0].
    • A slice object with ints 1:7.
    • A boolean array.
    • A callable function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above).

    New in version 0.18.1.

    See more at Selection by Position, Advanced Indexing and Advanced Hierarchical.

    • An integer e.g. 5.
    • A list or array of integers [4, 3, 0].
    • A slice object with ints 1:7.
    • A boolean array.
    • A callable function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above).

    New in version 0.18.1.

  • .loc, .iloc, and also [] indexing can accept a callable as indexer. See more at Selection By Callable.

Getting values from an object with multi-axes selection uses the following notation (using .loc as an example, but the following applies to .iloc as well). Any of the axes accessors may be the null slice :. Axes left out of the specification are assumed to be :, e.g. p.loc['a'] is equivalent to p.loc['a', :, :].

Object Type Indexers
Series s.loc[indexer]
DataFrame df.loc[row_indexer,column_indexer]

Basics

As mentioned when introducing the data structures in the last section, the primary function of indexing with [] (a.k.a. __getitem__ for those familiar with implementing class behavior in Python) is selecting out lower-dimensional slices. The following table shows return type values when indexing pandas objects with []:

Object Type Selection Return Value Type
Series series[label] scalar value
DataFrame frame[colname] Series corresponding to colname

Here we construct a simple time series data set to use for illustrating the indexing functionality:

  1. In [1]: dates = pd.date_range('1/1/2000', periods=8)
  2. In [2]: df = pd.DataFrame(np.random.randn(8, 4),
  3. ...: index=dates, columns=['A', 'B', 'C', 'D'])
  4. ...:
  5. In [3]: df
  6. Out[3]:
  7. A B C D
  8. 2000-01-01 0.469112 -0.282863 -1.509059 -1.135632
  9. 2000-01-02 1.212112 -0.173215 0.119209 -1.044236
  10. 2000-01-03 -0.861849 -2.104569 -0.494929 1.071804
  11. 2000-01-04 0.721555 -0.706771 -1.039575 0.271860
  12. 2000-01-05 -0.424972 0.567020 0.276232 -1.087401
  13. 2000-01-06 -0.673690 0.113648 -1.478427 0.524988
  14. 2000-01-07 0.404705 0.577046 -1.715002 -1.039268
  15. 2000-01-08 -0.370647 -1.157892 -1.344312 0.844885

::: tip Note

None of the indexing functionality is time series specific unless specifically stated.

:::

Thus, as per above, we have the most basic indexing using []:

  1. In [4]: s = df['A']
  2. In [5]: s[dates[5]]
  3. Out[5]: -0.6736897080883706

You can pass a list of columns to [] to select columns in that order. If a column is not contained in the DataFrame, an exception will be raised. Multiple columns can also be set in this manner:

  1. In [6]: df
  2. Out[6]:
  3. A B C D
  4. 2000-01-01 0.469112 -0.282863 -1.509059 -1.135632
  5. 2000-01-02 1.212112 -0.173215 0.119209 -1.044236
  6. 2000-01-03 -0.861849 -2.104569 -0.494929 1.071804
  7. 2000-01-04 0.721555 -0.706771 -1.039575 0.271860
  8. 2000-01-05 -0.424972 0.567020 0.276232 -1.087401
  9. 2000-01-06 -0.673690 0.113648 -1.478427 0.524988
  10. 2000-01-07 0.404705 0.577046 -1.715002 -1.039268
  11. 2000-01-08 -0.370647 -1.157892 -1.344312 0.844885
  12. In [7]: df[['B', 'A']] = df[['A', 'B']]
  13. In [8]: df
  14. Out[8]:
  15. A B C D
  16. 2000-01-01 -0.282863 0.469112 -1.509059 -1.135632
  17. 2000-01-02 -0.173215 1.212112 0.119209 -1.044236
  18. 2000-01-03 -2.104569 -0.861849 -0.494929 1.071804
  19. 2000-01-04 -0.706771 0.721555 -1.039575 0.271860
  20. 2000-01-05 0.567020 -0.424972 0.276232 -1.087401
  21. 2000-01-06 0.113648 -0.673690 -1.478427 0.524988
  22. 2000-01-07 0.577046 0.404705 -1.715002 -1.039268
  23. 2000-01-08 -1.157892 -0.370647 -1.344312 0.844885

You may find this useful for applying a transform (in-place) to a subset of the columns.

::: danger Warning

pandas aligns all AXES when setting Series and DataFrame from .loc, and .iloc.

This will not modify df because the column alignment is before value assignment.

  1. In [9]: df[['A', 'B']]
  2. Out[9]:
  3. A B
  4. 2000-01-01 -0.282863 0.469112
  5. 2000-01-02 -0.173215 1.212112
  6. 2000-01-03 -2.104569 -0.861849
  7. 2000-01-04 -0.706771 0.721555
  8. 2000-01-05 0.567020 -0.424972
  9. 2000-01-06 0.113648 -0.673690
  10. 2000-01-07 0.577046 0.404705
  11. 2000-01-08 -1.157892 -0.370647
  12. In [10]: df.loc[:, ['B', 'A']] = df[['A', 'B']]
  13. In [11]: df[['A', 'B']]
  14. Out[11]:
  15. A B
  16. 2000-01-01 -0.282863 0.469112
  17. 2000-01-02 -0.173215 1.212112
  18. 2000-01-03 -2.104569 -0.861849
  19. 2000-01-04 -0.706771 0.721555
  20. 2000-01-05 0.567020 -0.424972
  21. 2000-01-06 0.113648 -0.673690
  22. 2000-01-07 0.577046 0.404705
  23. 2000-01-08 -1.157892 -0.370647

The correct way to swap column values is by using raw values:

  1. In [12]: df.loc[:, ['B', 'A']] = df[['A', 'B']].to_numpy()
  2. In [13]: df[['A', 'B']]
  3. Out[13]:
  4. A B
  5. 2000-01-01 0.469112 -0.282863
  6. 2000-01-02 1.212112 -0.173215
  7. 2000-01-03 -0.861849 -2.104569
  8. 2000-01-04 0.721555 -0.706771
  9. 2000-01-05 -0.424972 0.567020
  10. 2000-01-06 -0.673690 0.113648
  11. 2000-01-07 0.404705 0.577046
  12. 2000-01-08 -0.370647 -1.157892

:::

Attribute access

You may access an index on a Series or column on a DataFrame directly as an attribute:

  1. In [14]: sa = pd.Series([1, 2, 3], index=list('abc'))
  2. In [15]: dfa = df.copy()
  1. In [16]: sa.b
  2. Out[16]: 2
  3. In [17]: dfa.A
  4. Out[17]:
  5. 2000-01-01 0.469112
  6. 2000-01-02 1.212112
  7. 2000-01-03 -0.861849
  8. 2000-01-04 0.721555
  9. 2000-01-05 -0.424972
  10. 2000-01-06 -0.673690
  11. 2000-01-07 0.404705
  12. 2000-01-08 -0.370647
  13. Freq: D, Name: A, dtype: float64
  1. In [18]: sa.a = 5
  2. In [19]: sa
  3. Out[19]:
  4. a 5
  5. b 2
  6. c 3
  7. dtype: int64
  8. In [20]: dfa.A = list(range(len(dfa.index))) # ok if A already exists
  9. In [21]: dfa
  10. Out[21]:
  11. A B C D
  12. 2000-01-01 0 -0.282863 -1.509059 -1.135632
  13. 2000-01-02 1 -0.173215 0.119209 -1.044236
  14. 2000-01-03 2 -2.104569 -0.494929 1.071804
  15. 2000-01-04 3 -0.706771 -1.039575 0.271860
  16. 2000-01-05 4 0.567020 0.276232 -1.087401
  17. 2000-01-06 5 0.113648 -1.478427 0.524988
  18. 2000-01-07 6 0.577046 -1.715002 -1.039268
  19. 2000-01-08 7 -1.157892 -1.344312 0.844885
  20. In [22]: dfa['A'] = list(range(len(dfa.index))) # use this form to create a new column
  21. In [23]: dfa
  22. Out[23]:
  23. A B C D
  24. 2000-01-01 0 -0.282863 -1.509059 -1.135632
  25. 2000-01-02 1 -0.173215 0.119209 -1.044236
  26. 2000-01-03 2 -2.104569 -0.494929 1.071804
  27. 2000-01-04 3 -0.706771 -1.039575 0.271860
  28. 2000-01-05 4 0.567020 0.276232 -1.087401
  29. 2000-01-06 5 0.113648 -1.478427 0.524988
  30. 2000-01-07 6 0.577046 -1.715002 -1.039268
  31. 2000-01-08 7 -1.157892 -1.344312 0.844885

::: danger Warning

  • You can use this access only if the index element is a valid Python identifier, e.g. s.1 is not allowed. See here for an explanation of valid identifiers.
  • The attribute will not be available if it conflicts with an existing method name, e.g. s.min is not allowed.
  • Similarly, the attribute will not be available if it conflicts with any of the following list: index, major_axis, minor_axis, items.
  • In any of these cases, standard indexing will still work, e.g. s['1'], s['min'], and s['index'] will access the corresponding element or column.

:::

If you are using the IPython environment, you may also use tab-completion to see these accessible attributes.

You can also assign a dict to a row of a DataFrame:

  1. In [24]: x = pd.DataFrame({'x': [1, 2, 3], 'y': [3, 4, 5]})
  2. In [25]: x.iloc[1] = {'x': 9, 'y': 99}
  3. In [26]: x
  4. Out[26]:
  5. x y
  6. 0 1 3
  7. 1 9 99
  8. 2 3 5

You can use attribute access to modify an existing element of a Series or column of a DataFrame, but be careful; if you try to use attribute access to create a new column, it creates a new attribute rather than a new column. In 0.21.0 and later, this will raise a UserWarning:

  1. In [1]: df = pd.DataFrame({'one': [1., 2., 3.]})
  2. In [2]: df.two = [4, 5, 6]
  3. UserWarning: Pandas doesn't allow Series to be assigned into nonexistent columns - see https://pandas.pydata.org/pandas-docs/stable/indexing.html#attribute_access
  4. In [3]: df
  5. Out[3]:
  6. one
  7. 0 1.0
  8. 1 2.0
  9. 2 3.0

Slicing ranges

The most robust and consistent way of slicing ranges along arbitrary axes is described in the Selection by Position section detailing the .iloc method. For now, we explain the semantics of slicing using the [] operator.

With Series, the syntax works exactly as with an ndarray, returning a slice of the values and the corresponding labels:

  1. In [27]: s[:5]
  2. Out[27]:
  3. 2000-01-01 0.469112
  4. 2000-01-02 1.212112
  5. 2000-01-03 -0.861849
  6. 2000-01-04 0.721555
  7. 2000-01-05 -0.424972
  8. Freq: D, Name: A, dtype: float64
  9. In [28]: s[::2]
  10. Out[28]:
  11. 2000-01-01 0.469112
  12. 2000-01-03 -0.861849
  13. 2000-01-05 -0.424972
  14. 2000-01-07 0.404705
  15. Freq: 2D, Name: A, dtype: float64
  16. In [29]: s[::-1]
  17. Out[29]:
  18. 2000-01-08 -0.370647
  19. 2000-01-07 0.404705
  20. 2000-01-06 -0.673690
  21. 2000-01-05 -0.424972
  22. 2000-01-04 0.721555
  23. 2000-01-03 -0.861849
  24. 2000-01-02 1.212112
  25. 2000-01-01 0.469112
  26. Freq: -1D, Name: A, dtype: float64

Note that setting works as well:

  1. In [30]: s2 = s.copy()
  2. In [31]: s2[:5] = 0
  3. In [32]: s2
  4. Out[32]:
  5. 2000-01-01 0.000000
  6. 2000-01-02 0.000000
  7. 2000-01-03 0.000000
  8. 2000-01-04 0.000000
  9. 2000-01-05 0.000000
  10. 2000-01-06 -0.673690
  11. 2000-01-07 0.404705
  12. 2000-01-08 -0.370647
  13. Freq: D, Name: A, dtype: float64

With DataFrame, slicing inside of [] slices the rows. This is provided largely as a convenience since it is such a common operation.

  1. In [33]: df[:3]
  2. Out[33]:
  3. A B C D
  4. 2000-01-01 0.469112 -0.282863 -1.509059 -1.135632
  5. 2000-01-02 1.212112 -0.173215 0.119209 -1.044236
  6. 2000-01-03 -0.861849 -2.104569 -0.494929 1.071804
  7. In [34]: df[::-1]
  8. Out[34]:
  9. A B C D
  10. 2000-01-08 -0.370647 -1.157892 -1.344312 0.844885
  11. 2000-01-07 0.404705 0.577046 -1.715002 -1.039268
  12. 2000-01-06 -0.673690 0.113648 -1.478427 0.524988
  13. 2000-01-05 -0.424972 0.567020 0.276232 -1.087401
  14. 2000-01-04 0.721555 -0.706771 -1.039575 0.271860
  15. 2000-01-03 -0.861849 -2.104569 -0.494929 1.071804
  16. 2000-01-02 1.212112 -0.173215 0.119209 -1.044236
  17. 2000-01-01 0.469112 -0.282863 -1.509059 -1.135632

Selection by label

::: danger Warning

Whether a copy or a reference is returned for a setting operation, may depend on the context. This is sometimes called chained assignment and should be avoided. See Returning a View versus Copy.

:::

::: danger Warning

  1. In [35]: dfl = pd.DataFrame(np.random.randn(5, 4),
  2. ....: columns=list('ABCD'),
  3. ....: index=pd.date_range('20130101', periods=5))
  4. ....:
  5. In [36]: dfl
  6. Out[36]:
  7. A B C D
  8. 2013-01-01 1.075770 -0.109050 1.643563 -1.469388
  9. 2013-01-02 0.357021 -0.674600 -1.776904 -0.968914
  10. 2013-01-03 -1.294524 0.413738 0.276662 -0.472035
  11. 2013-01-04 -0.013960 -0.362543 -0.006154 -0.923061
  12. 2013-01-05 0.895717 0.805244 -1.206412 2.565646
  1. In [4]: dfl.loc[2:3]
  2. TypeError: cannot do slice indexing on <class 'pandas.tseries.index.DatetimeIndex'> with these indexers [2] of <type 'int'>

String likes in slicing can be convertible to the type of the index and lead to natural slicing.

  1. In [37]: dfl.loc['20130102':'20130104']
  2. Out[37]:
  3. A B C D
  4. 2013-01-02 0.357021 -0.674600 -1.776904 -0.968914
  5. 2013-01-03 -1.294524 0.413738 0.276662 -0.472035
  6. 2013-01-04 -0.013960 -0.362543 -0.006154 -0.923061

:::

::: danger Warning

Starting in 0.21.0, pandas will show a FutureWarning if indexing with a list with missing labels. In the future this will raise a KeyError. See list-like Using loc with missing keys in a list is Deprecated.

:::

pandas provides a suite of methods in order to have purely label based indexing. This is a strict inclusion based protocol. Every label asked for must be in the index, or a KeyError will be raised. When slicing, both the start bound AND the stop bound are included, if present in the index. Integers are valid labels, but they refer to the label and not the position.

The .loc attribute is the primary access method. The following are valid inputs:

  • A single label, e.g. 5 or 'a' (Note that 5 is interpreted as a label of the index. This use is not an integer position along the index.).
  • A list or array of labels ['a', 'b', 'c'].
  • A slice object with labels 'a':'f' (Note that contrary to usual python slices, both the start and the stop are included, when present in the index! See Slicing with labels.
  • A boolean array.
  • A callable, see Selection By Callable.
  1. In [38]: s1 = pd.Series(np.random.randn(6), index=list('abcdef'))
  2. In [39]: s1
  3. Out[39]:
  4. a 1.431256
  5. b 1.340309
  6. c -1.170299
  7. d -0.226169
  8. e 0.410835
  9. f 0.813850
  10. dtype: float64
  11. In [40]: s1.loc['c':]
  12. Out[40]:
  13. c -1.170299
  14. d -0.226169
  15. e 0.410835
  16. f 0.813850
  17. dtype: float64
  18. In [41]: s1.loc['b']
  19. Out[41]: 1.3403088497993827

Note that setting works as well:

  1. In [42]: s1.loc['c':] = 0
  2. In [43]: s1
  3. Out[43]:
  4. a 1.431256
  5. b 1.340309
  6. c 0.000000
  7. d 0.000000
  8. e 0.000000
  9. f 0.000000
  10. dtype: float64

With a DataFrame:

  1. In [44]: df1 = pd.DataFrame(np.random.randn(6, 4),
  2. ....: index=list('abcdef'),
  3. ....: columns=list('ABCD'))
  4. ....:
  5. In [45]: df1
  6. Out[45]:
  7. A B C D
  8. a 0.132003 -0.827317 -0.076467 -1.187678
  9. b 1.130127 -1.436737 -1.413681 1.607920
  10. c 1.024180 0.569605 0.875906 -2.211372
  11. d 0.974466 -2.006747 -0.410001 -0.078638
  12. e 0.545952 -1.219217 -1.226825 0.769804
  13. f -1.281247 -0.727707 -0.121306 -0.097883
  14. In [46]: df1.loc[['a', 'b', 'd'], :]
  15. Out[46]:
  16. A B C D
  17. a 0.132003 -0.827317 -0.076467 -1.187678
  18. b 1.130127 -1.436737 -1.413681 1.607920
  19. d 0.974466 -2.006747 -0.410001 -0.078638

Accessing via label slices:

  1. In [47]: df1.loc['d':, 'A':'C']
  2. Out[47]:
  3. A B C
  4. d 0.974466 -2.006747 -0.410001
  5. e 0.545952 -1.219217 -1.226825
  6. f -1.281247 -0.727707 -0.121306

For getting a cross section using a label (equivalent to df.xs('a')):

  1. In [48]: df1.loc['a']
  2. Out[48]:
  3. A 0.132003
  4. B -0.827317
  5. C -0.076467
  6. D -1.187678
  7. Name: a, dtype: float64

For getting values with a boolean array:

  1. In [49]: df1.loc['a'] > 0
  2. Out[49]:
  3. A True
  4. B False
  5. C False
  6. D False
  7. Name: a, dtype: bool
  8. In [50]: df1.loc[:, df1.loc['a'] > 0]
  9. Out[50]:
  10. A
  11. a 0.132003
  12. b 1.130127
  13. c 1.024180
  14. d 0.974466
  15. e 0.545952
  16. f -1.281247

For getting a value explicitly (equivalent to deprecated df.get_value('a','A')):

  1. # this is also equivalent to ``df1.at['a','A']``
  2. In [51]: df1.loc['a', 'A']
  3. Out[51]: 0.13200317033032932

Slicing with labels

When using .loc with slices, if both the start and the stop labels are present in the index, then elements located between the two (including them) are returned:

  1. In [52]: s = pd.Series(list('abcde'), index=[0, 3, 2, 5, 4])
  2. In [53]: s.loc[3:5]
  3. Out[53]:
  4. 3 b
  5. 2 c
  6. 5 d
  7. dtype: object

If at least one of the two is absent, but the index is sorted, and can be compared against start and stop labels, then slicing will still work as expected, by selecting labels which rank between the two:

  1. In [54]: s.sort_index()
  2. Out[54]:
  3. 0 a
  4. 2 c
  5. 3 b
  6. 4 e
  7. 5 d
  8. dtype: object
  9. In [55]: s.sort_index().loc[1:6]
  10. Out[55]:
  11. 2 c
  12. 3 b
  13. 4 e
  14. 5 d
  15. dtype: object

However, if at least one of the two is absent and the index is not sorted, an error will be raised (since doing otherwise would be computationally expensive, as well as potentially ambiguous for mixed type indexes). For instance, in the above example, s.loc[1:6] would raise KeyError.

For the rationale behind this behavior, see Endpoints are inclusive.

Selection by position

::: danger Warning

Whether a copy or a reference is returned for a setting operation, may depend on the context. This is sometimes called chained assignment and should be avoided. See Returning a View versus Copy.

:::

Pandas provides a suite of methods in order to get purely integer based indexing. The semantics follow closely Python and NumPy slicing. These are 0-based indexing. When slicing, the start bound is included, while the upper bound is excluded. Trying to use a non-integer, even a valid label will raise an IndexError.

The .iloc attribute is the primary access method. The following are valid inputs:

  • An integer e.g. 5.
  • A list or array of integers [4, 3, 0].
  • A slice object with ints 1:7.
  • A boolean array.
  • A callable, see Selection By Callable.
  1. In [56]: s1 = pd.Series(np.random.randn(5), index=list(range(0, 10, 2)))
  2. In [57]: s1
  3. Out[57]:
  4. 0 0.695775
  5. 2 0.341734
  6. 4 0.959726
  7. 6 -1.110336
  8. 8 -0.619976
  9. dtype: float64
  10. In [58]: s1.iloc[:3]
  11. Out[58]:
  12. 0 0.695775
  13. 2 0.341734
  14. 4 0.959726
  15. dtype: float64
  16. In [59]: s1.iloc[3]
  17. Out[59]: -1.110336102891167

Note that setting works as well:

  1. In [60]: s1.iloc[:3] = 0
  2. In [61]: s1
  3. Out[61]:
  4. 0 0.000000
  5. 2 0.000000
  6. 4 0.000000
  7. 6 -1.110336
  8. 8 -0.619976
  9. dtype: float64

With a DataFrame:

  1. In [62]: df1 = pd.DataFrame(np.random.randn(6, 4),
  2. ....: index=list(range(0, 12, 2)),
  3. ....: columns=list(range(0, 8, 2)))
  4. ....:
  5. In [63]: df1
  6. Out[63]:
  7. 0 2 4 6
  8. 0 0.149748 -0.732339 0.687738 0.176444
  9. 2 0.403310 -0.154951 0.301624 -2.179861
  10. 4 -1.369849 -0.954208 1.462696 -1.743161
  11. 6 -0.826591 -0.345352 1.314232 0.690579
  12. 8 0.995761 2.396780 0.014871 3.357427
  13. 10 -0.317441 -1.236269 0.896171 -0.487602

Select via integer slicing:

  1. In [64]: df1.iloc[:3]
  2. Out[64]:
  3. 0 2 4 6
  4. 0 0.149748 -0.732339 0.687738 0.176444
  5. 2 0.403310 -0.154951 0.301624 -2.179861
  6. 4 -1.369849 -0.954208 1.462696 -1.743161
  7. In [65]: df1.iloc[1:5, 2:4]
  8. Out[65]:
  9. 4 6
  10. 2 0.301624 -2.179861
  11. 4 1.462696 -1.743161
  12. 6 1.314232 0.690579
  13. 8 0.014871 3.357427

Select via integer list:

  1. In [66]: df1.iloc[[1, 3, 5], [1, 3]]
  2. Out[66]:
  3. 2 6
  4. 2 -0.154951 -2.179861
  5. 6 -0.345352 0.690579
  6. 10 -1.236269 -0.487602
  1. In [67]: df1.iloc[1:3, :]
  2. Out[67]:
  3. 0 2 4 6
  4. 2 0.403310 -0.154951 0.301624 -2.179861
  5. 4 -1.369849 -0.954208 1.462696 -1.743161
  1. In [68]: df1.iloc[:, 1:3]
  2. Out[68]:
  3. 2 4
  4. 0 -0.732339 0.687738
  5. 2 -0.154951 0.301624
  6. 4 -0.954208 1.462696
  7. 6 -0.345352 1.314232
  8. 8 2.396780 0.014871
  9. 10 -1.236269 0.896171
  1. # this is also equivalent to ``df1.iat[1,1]``
  2. In [69]: df1.iloc[1, 1]
  3. Out[69]: -0.1549507744249032

For getting a cross section using an integer position (equiv to df.xs(1)):

  1. In [70]: df1.iloc[1]
  2. Out[70]:
  3. 0 0.403310
  4. 2 -0.154951
  5. 4 0.301624
  6. 6 -2.179861
  7. Name: 2, dtype: float64

Out of range slice indexes are handled gracefully just as in Python/Numpy.

  1. # these are allowed in python/numpy.
  2. In [71]: x = list('abcdef')
  3. In [72]: x
  4. Out[72]: ['a', 'b', 'c', 'd', 'e', 'f']
  5. In [73]: x[4:10]
  6. Out[73]: ['e', 'f']
  7. In [74]: x[8:10]
  8. Out[74]: []
  9. In [75]: s = pd.Series(x)
  10. In [76]: s
  11. Out[76]:
  12. 0 a
  13. 1 b
  14. 2 c
  15. 3 d
  16. 4 e
  17. 5 f
  18. dtype: object
  19. In [77]: s.iloc[4:10]
  20. Out[77]:
  21. 4 e
  22. 5 f
  23. dtype: object
  24. In [78]: s.iloc[8:10]
  25. Out[78]: Series([], dtype: object)

Note that using slices that go out of bounds can result in an empty axis (e.g. an empty DataFrame being returned).

  1. In [79]: dfl = pd.DataFrame(np.random.randn(5, 2), columns=list('AB'))
  2. In [80]: dfl
  3. Out[80]:
  4. A B
  5. 0 -0.082240 -2.182937
  6. 1 0.380396 0.084844
  7. 2 0.432390 1.519970
  8. 3 -0.493662 0.600178
  9. 4 0.274230 0.132885
  10. In [81]: dfl.iloc[:, 2:3]
  11. Out[81]:
  12. Empty DataFrame
  13. Columns: []
  14. Index: [0, 1, 2, 3, 4]
  15. In [82]: dfl.iloc[:, 1:3]
  16. Out[82]:
  17. B
  18. 0 -2.182937
  19. 1 0.084844
  20. 2 1.519970
  21. 3 0.600178
  22. 4 0.132885
  23. In [83]: dfl.iloc[4:6]
  24. Out[83]:
  25. A B
  26. 4 0.27423 0.132885

A single indexer that is out of bounds will raise an IndexError. A list of indexers where any element is out of bounds will raise an IndexError.

  1. >>> dfl.iloc[[4, 5, 6]]
  2. IndexError: positional indexers are out-of-bounds
  3. >>> dfl.iloc[:, 4]
  4. IndexError: single positional indexer is out-of-bounds

Selection by callable

New in version 0.18.1.

.loc, .iloc, and also [] indexing can accept a callable as indexer. The callable must be a function with one argument (the calling Series or DataFrame) that returns valid output for indexing.

  1. In [84]: df1 = pd.DataFrame(np.random.randn(6, 4),
  2. ....: index=list('abcdef'),
  3. ....: columns=list('ABCD'))
  4. ....:
  5. In [85]: df1
  6. Out[85]:
  7. A B C D
  8. a -0.023688 2.410179 1.450520 0.206053
  9. b -0.251905 -2.213588 1.063327 1.266143
  10. c 0.299368 -0.863838 0.408204 -1.048089
  11. d -0.025747 -0.988387 0.094055 1.262731
  12. e 1.289997 0.082423 -0.055758 0.536580
  13. f -0.489682 0.369374 -0.034571 -2.484478
  14. In [86]: df1.loc[lambda df: df.A > 0, :]
  15. Out[86]:
  16. A B C D
  17. c 0.299368 -0.863838 0.408204 -1.048089
  18. e 1.289997 0.082423 -0.055758 0.536580
  19. In [87]: df1.loc[:, lambda df: ['A', 'B']]
  20. Out[87]:
  21. A B
  22. a -0.023688 2.410179
  23. b -0.251905 -2.213588
  24. c 0.299368 -0.863838
  25. d -0.025747 -0.988387
  26. e 1.289997 0.082423
  27. f -0.489682 0.369374
  28. In [88]: df1.iloc[:, lambda df: [0, 1]]
  29. Out[88]:
  30. A B
  31. a -0.023688 2.410179
  32. b -0.251905 -2.213588
  33. c 0.299368 -0.863838
  34. d -0.025747 -0.988387
  35. e 1.289997 0.082423
  36. f -0.489682 0.369374
  37. In [89]: df1[lambda df: df.columns[0]]
  38. Out[89]:
  39. a -0.023688
  40. b -0.251905
  41. c 0.299368
  42. d -0.025747
  43. e 1.289997
  44. f -0.489682
  45. Name: A, dtype: float64

You can use callable indexing in Series.

  1. In [90]: df1.A.loc[lambda s: s > 0]
  2. Out[90]:
  3. c 0.299368
  4. e 1.289997
  5. Name: A, dtype: float64

Using these methods / indexers, you can chain data selection operations without using a temporary variable.

  1. In [91]: bb = pd.read_csv('data/baseball.csv', index_col='id')
  2. In [92]: (bb.groupby(['year', 'team']).sum()
  3. ....: .loc[lambda df: df.r > 100])
  4. ....:
  5. Out[92]:
  6. stint g ab r h X2b X3b hr rbi sb cs bb so ibb hbp sh sf gidp
  7. year team
  8. 2007 CIN 6 379 745 101 203 35 2 36 125.0 10.0 1.0 105 127.0 14.0 1.0 1.0 15.0 18.0
  9. DET 5 301 1062 162 283 54 4 37 144.0 24.0 7.0 97 176.0 3.0 10.0 4.0 8.0 28.0
  10. HOU 4 311 926 109 218 47 6 14 77.0 10.0 4.0 60 212.0 3.0 9.0 16.0 6.0 17.0
  11. LAN 11 413 1021 153 293 61 3 36 154.0 7.0 5.0 114 141.0 8.0 9.0 3.0 8.0 29.0
  12. NYN 13 622 1854 240 509 101 3 61 243.0 22.0 4.0 174 310.0 24.0 23.0 18.0 15.0 48.0
  13. SFN 5 482 1305 198 337 67 6 40 171.0 26.0 7.0 235 188.0 51.0 8.0 16.0 6.0 41.0
  14. TEX 2 198 729 115 200 40 4 28 115.0 21.0 4.0 73 140.0 4.0 5.0 2.0 8.0 16.0
  15. TOR 4 459 1408 187 378 96 2 58 223.0 4.0 2.0 190 265.0 16.0 12.0 4.0 16.0 38.0

IX indexer is deprecated

::: danger Warning

Starting in 0.20.0, the .ix indexer is deprecated, in favor of the more strict .iloc and .loc indexers.

:::

.ix offers a lot of magic on the inference of what the user wants to do. To wit, .ix can decide to index positionally OR via labels depending on the data type of the index. This has caused quite a bit of user confusion over the years.

The recommended methods of indexing are:

  • .loc if you want to label index.
  • .iloc if you want to positionally index.
  1. In [93]: dfd = pd.DataFrame({'A': [1, 2, 3],
  2. ....: 'B': [4, 5, 6]},
  3. ....: index=list('abc'))
  4. ....:
  5. In [94]: dfd
  6. Out[94]:
  7. A B
  8. a 1 4
  9. b 2 5
  10. c 3 6

Previous behavior, where you wish to get the 0th and the 2nd elements from the index in the ‘A’ column.

  1. In [3]: dfd.ix[[0, 2], 'A']
  2. Out[3]:
  3. a 1
  4. c 3
  5. Name: A, dtype: int64

Using .loc. Here we will select the appropriate indexes from the index, then use label indexing.

  1. In [95]: dfd.loc[dfd.index[[0, 2]], 'A']
  2. Out[95]:
  3. a 1
  4. c 3
  5. Name: A, dtype: int64

This can also be expressed using .iloc, by explicitly getting locations on the indexers, and using positional indexing to select things.

  1. In [96]: dfd.iloc[[0, 2], dfd.columns.get_loc('A')]
  2. Out[96]:
  3. a 1
  4. c 3
  5. Name: A, dtype: int64

For getting multiple indexers, using .get_indexer:

  1. In [97]: dfd.iloc[[0, 2], dfd.columns.get_indexer(['A', 'B'])]
  2. Out[97]:
  3. A B
  4. a 1 4
  5. c 3 6

Indexing with list with missing labels is deprecated

::: danger Warning

Starting in 0.21.0, using .loc or [] with a list with one or more missing labels, is deprecated, in favor of .reindex.

:::

In prior versions, using .loc[list-of-labels] would work as long as at least 1 of the keys was found (otherwise it would raise a KeyError). This behavior is deprecated and will show a warning message pointing to this section. The recommended alternative is to use .reindex().

For example.

  1. In [98]: s = pd.Series([1, 2, 3])
  2. In [99]: s
  3. Out[99]:
  4. 0 1
  5. 1 2
  6. 2 3
  7. dtype: int64

Selection with all keys found is unchanged.

  1. In [100]: s.loc[[1, 2]]
  2. Out[100]:
  3. 1 2
  4. 2 3
  5. dtype: int64

Previous behavior

  1. In [4]: s.loc[[1, 2, 3]]
  2. Out[4]:
  3. 1 2.0
  4. 2 3.0
  5. 3 NaN
  6. dtype: float64

Current behavior

  1. In [4]: s.loc[[1, 2, 3]]
  2. Passing list-likes to .loc with any non-matching elements will raise
  3. KeyError in the future, you can use .reindex() as an alternative.
  4. See the documentation here:
  5. http://pandas.pydata.org/pandas-docs/stable/indexing.html#deprecate-loc-reindex-listlike
  6. Out[4]:
  7. 1 2.0
  8. 2 3.0
  9. 3 NaN
  10. dtype: float64

Reindexing

The idiomatic way to achieve selecting potentially not-found elements is via .reindex(). See also the section on reindexing.

  1. In [101]: s.reindex([1, 2, 3])
  2. Out[101]:
  3. 1 2.0
  4. 2 3.0
  5. 3 NaN
  6. dtype: float64

Alternatively, if you want to select only valid keys, the following is idiomatic and efficient; it is guaranteed to preserve the dtype of the selection.

  1. In [102]: labels = [1, 2, 3]
  2. In [103]: s.loc[s.index.intersection(labels)]
  3. Out[103]:
  4. 1 2
  5. 2 3
  6. dtype: int64

Having a duplicated index will raise for a .reindex():

  1. In [104]: s = pd.Series(np.arange(4), index=['a', 'a', 'b', 'c'])
  2. In [105]: labels = ['c', 'd']
  1. In [17]: s.reindex(labels)
  2. ValueError: cannot reindex from a duplicate axis

Generally, you can intersect the desired labels with the current axis, and then reindex.

  1. In [106]: s.loc[s.index.intersection(labels)].reindex(labels)
  2. Out[106]:
  3. c 3.0
  4. d NaN
  5. dtype: float64

However, this would still raise if your resulting index is duplicated.

  1. In [41]: labels = ['a', 'd']
  2. In [42]: s.loc[s.index.intersection(labels)].reindex(labels)
  3. ValueError: cannot reindex from a duplicate axis

Selecting random samples

A random selection of rows or columns from a Series or DataFrame with the sample() method. The method will sample rows by default, and accepts a specific number of rows/columns to return, or a fraction of rows.

  1. In [107]: s = pd.Series([0, 1, 2, 3, 4, 5])
  2. # When no arguments are passed, returns 1 row.
  3. In [108]: s.sample()
  4. Out[108]:
  5. 4 4
  6. dtype: int64
  7. # One may specify either a number of rows:
  8. In [109]: s.sample(n=3)
  9. Out[109]:
  10. 0 0
  11. 4 4
  12. 1 1
  13. dtype: int64
  14. # Or a fraction of the rows:
  15. In [110]: s.sample(frac=0.5)
  16. Out[110]:
  17. 5 5
  18. 3 3
  19. 1 1
  20. dtype: int64

By default, sample will return each row at most once, but one can also sample with replacement using the replace option:

  1. In [111]: s = pd.Series([0, 1, 2, 3, 4, 5])
  2. # Without replacement (default):
  3. In [112]: s.sample(n=6, replace=False)
  4. Out[112]:
  5. 0 0
  6. 1 1
  7. 5 5
  8. 3 3
  9. 2 2
  10. 4 4
  11. dtype: int64
  12. # With replacement:
  13. In [113]: s.sample(n=6, replace=True)
  14. Out[113]:
  15. 0 0
  16. 4 4
  17. 3 3
  18. 2 2
  19. 4 4
  20. 4 4
  21. dtype: int64

By default, each row has an equal probability of being selected, but if you want rows to have different probabilities, you can pass the sample function sampling weights as weights. These weights can be a list, a NumPy array, or a Series, but they must be of the same length as the object you are sampling. Missing values will be treated as a weight of zero, and inf values are not allowed. If weights do not sum to 1, they will be re-normalized by dividing all weights by the sum of the weights. For example:

  1. In [114]: s = pd.Series([0, 1, 2, 3, 4, 5])
  2. In [115]: example_weights = [0, 0, 0.2, 0.2, 0.2, 0.4]
  3. In [116]: s.sample(n=3, weights=example_weights)
  4. Out[116]:
  5. 5 5
  6. 4 4
  7. 3 3
  8. dtype: int64
  9. # Weights will be re-normalized automatically
  10. In [117]: example_weights2 = [0.5, 0, 0, 0, 0, 0]
  11. In [118]: s.sample(n=1, weights=example_weights2)
  12. Out[118]:
  13. 0 0
  14. dtype: int64

When applied to a DataFrame, you can use a column of the DataFrame as sampling weights (provided you are sampling rows and not columns) by simply passing the name of the column as a string.

  1. In [119]: df2 = pd.DataFrame({'col1': [9, 8, 7, 6],
  2. .....: 'weight_column': [0.5, 0.4, 0.1, 0]})
  3. .....:
  4. In [120]: df2.sample(n=3, weights='weight_column')
  5. Out[120]:
  6. col1 weight_column
  7. 1 8 0.4
  8. 0 9 0.5
  9. 2 7 0.1

sample also allows users to sample columns instead of rows using the axis argument.

  1. In [121]: df3 = pd.DataFrame({'col1': [1, 2, 3], 'col2': [2, 3, 4]})
  2. In [122]: df3.sample(n=1, axis=1)
  3. Out[122]:
  4. col1
  5. 0 1
  6. 1 2
  7. 2 3

Finally, one can also set a seed for sample’s random number generator using the random_state argument, which will accept either an integer (as a seed) or a NumPy RandomState object.

  1. In [123]: df4 = pd.DataFrame({'col1': [1, 2, 3], 'col2': [2, 3, 4]})
  2. # With a given seed, the sample will always draw the same rows.
  3. In [124]: df4.sample(n=2, random_state=2)
  4. Out[124]:
  5. col1 col2
  6. 2 3 4
  7. 1 2 3
  8. In [125]: df4.sample(n=2, random_state=2)
  9. Out[125]:
  10. col1 col2
  11. 2 3 4
  12. 1 2 3

Setting with enlargement

The .loc/[] operations can perform enlargement when setting a non-existent key for that axis.

In the Series case this is effectively an appending operation.

  1. In [126]: se = pd.Series([1, 2, 3])
  2. In [127]: se
  3. Out[127]:
  4. 0 1
  5. 1 2
  6. 2 3
  7. dtype: int64
  8. In [128]: se[5] = 5.
  9. In [129]: se
  10. Out[129]:
  11. 0 1.0
  12. 1 2.0
  13. 2 3.0
  14. 5 5.0
  15. dtype: float64

A DataFrame can be enlarged on either axis via .loc.

  1. In [130]: dfi = pd.DataFrame(np.arange(6).reshape(3, 2),
  2. .....: columns=['A', 'B'])
  3. .....:
  4. In [131]: dfi
  5. Out[131]:
  6. A B
  7. 0 0 1
  8. 1 2 3
  9. 2 4 5
  10. In [132]: dfi.loc[:, 'C'] = dfi.loc[:, 'A']
  11. In [133]: dfi
  12. Out[133]:
  13. A B C
  14. 0 0 1 0
  15. 1 2 3 2
  16. 2 4 5 4

This is like an append operation on the DataFrame.

  1. In [134]: dfi.loc[3] = 5
  2. In [135]: dfi
  3. Out[135]:
  4. A B C
  5. 0 0 1 0
  6. 1 2 3 2
  7. 2 4 5 4
  8. 3 5 5 5

Fast scalar value getting and setting

Since indexing with [] must handle a lot of cases (single-label access, slicing, boolean indexing, etc.), it has a bit of overhead in order to figure out what you’re asking for. If you only want to access a scalar value, the fastest way is to use the at and iat methods, which are implemented on all of the data structures.

Similarly to loc, at provides label based scalar lookups, while, iat provides integer based lookups analogously to iloc

  1. In [136]: s.iat[5]
  2. Out[136]: 5
  3. In [137]: df.at[dates[5], 'A']
  4. Out[137]: -0.6736897080883706
  5. In [138]: df.iat[3, 0]
  6. Out[138]: 0.7215551622443669

You can also set using these same indexers.

  1. In [139]: df.at[dates[5], 'E'] = 7
  2. In [140]: df.iat[3, 0] = 7

at may enlarge the object in-place as above if the indexer is missing.

  1. In [141]: df.at[dates[-1] + pd.Timedelta('1 day'), 0] = 7
  2. In [142]: df
  3. Out[142]:
  4. A B C D E 0
  5. 2000-01-01 0.469112 -0.282863 -1.509059 -1.135632 NaN NaN
  6. 2000-01-02 1.212112 -0.173215 0.119209 -1.044236 NaN NaN
  7. 2000-01-03 -0.861849 -2.104569 -0.494929 1.071804 NaN NaN
  8. 2000-01-04 7.000000 -0.706771 -1.039575 0.271860 NaN NaN
  9. 2000-01-05 -0.424972 0.567020 0.276232 -1.087401 NaN NaN
  10. 2000-01-06 -0.673690 0.113648 -1.478427 0.524988 7.0 NaN
  11. 2000-01-07 0.404705 0.577046 -1.715002 -1.039268 NaN NaN
  12. 2000-01-08 -0.370647 -1.157892 -1.344312 0.844885 NaN NaN
  13. 2000-01-09 NaN NaN NaN NaN NaN 7.0

Boolean indexing

Another common operation is the use of boolean vectors to filter the data. The operators are: | for or, & for and, and ~ for not. These must be grouped by using parentheses, since by default Python will evaluate an expression such as df.A > 2 & df.B < 3 as df.A > (2 & df.B) < 3, while the desired evaluation order is (df.A > 2) & (df.B < 3).

Using a boolean vector to index a Series works exactly as in a NumPy ndarray:

  1. In [143]: s = pd.Series(range(-3, 4))
  2. In [144]: s
  3. Out[144]:
  4. 0 -3
  5. 1 -2
  6. 2 -1
  7. 3 0
  8. 4 1
  9. 5 2
  10. 6 3
  11. dtype: int64
  12. In [145]: s[s > 0]
  13. Out[145]:
  14. 4 1
  15. 5 2
  16. 6 3
  17. dtype: int64
  18. In [146]: s[(s < -1) | (s > 0.5)]
  19. Out[146]:
  20. 0 -3
  21. 1 -2
  22. 4 1
  23. 5 2
  24. 6 3
  25. dtype: int64
  26. In [147]: s[~(s < 0)]
  27. Out[147]:
  28. 3 0
  29. 4 1
  30. 5 2
  31. 6 3
  32. dtype: int64

You may select rows from a DataFrame using a boolean vector the same length as the DataFrame’s index (for example, something derived from one of the columns of the DataFrame):

  1. In [148]: df[df['A'] > 0]
  2. Out[148]:
  3. A B C D E 0
  4. 2000-01-01 0.469112 -0.282863 -1.509059 -1.135632 NaN NaN
  5. 2000-01-02 1.212112 -0.173215 0.119209 -1.044236 NaN NaN
  6. 2000-01-04 7.000000 -0.706771 -1.039575 0.271860 NaN NaN
  7. 2000-01-07 0.404705 0.577046 -1.715002 -1.039268 NaN NaN

List comprehensions and the map method of Series can also be used to produce more complex criteria:

  1. In [149]: df2 = pd.DataFrame({'a': ['one', 'one', 'two', 'three', 'two', 'one', 'six'],
  2. .....: 'b': ['x', 'y', 'y', 'x', 'y', 'x', 'x'],
  3. .....: 'c': np.random.randn(7)})
  4. .....:
  5. # only want 'two' or 'three'
  6. In [150]: criterion = df2['a'].map(lambda x: x.startswith('t'))
  7. In [151]: df2[criterion]
  8. Out[151]:
  9. a b c
  10. 2 two y 0.041290
  11. 3 three x 0.361719
  12. 4 two y -0.238075
  13. # equivalent but slower
  14. In [152]: df2[[x.startswith('t') for x in df2['a']]]
  15. Out[152]:
  16. a b c
  17. 2 two y 0.041290
  18. 3 three x 0.361719
  19. 4 two y -0.238075
  20. # Multiple criteria
  21. In [153]: df2[criterion & (df2['b'] == 'x')]
  22. Out[153]:
  23. a b c
  24. 3 three x 0.361719

With the choice methods Selection by Label, Selection by Position, and Advanced Indexing you may select along more than one axis using boolean vectors combined with other indexing expressions.

  1. In [154]: df2.loc[criterion & (df2['b'] == 'x'), 'b':'c']
  2. Out[154]:
  3. b c
  4. 3 x 0.361719

Indexing with isin

Consider the isin() method of Series, which returns a boolean vector that is true wherever the Series elements exist in the passed list. This allows you to select rows where one or more columns have values you want:

  1. In [155]: s = pd.Series(np.arange(5), index=np.arange(5)[::-1], dtype='int64')
  2. In [156]: s
  3. Out[156]:
  4. 4 0
  5. 3 1
  6. 2 2
  7. 1 3
  8. 0 4
  9. dtype: int64
  10. In [157]: s.isin([2, 4, 6])
  11. Out[157]:
  12. 4 False
  13. 3 False
  14. 2 True
  15. 1 False
  16. 0 True
  17. dtype: bool
  18. In [158]: s[s.isin([2, 4, 6])]
  19. Out[158]:
  20. 2 2
  21. 0 4
  22. dtype: int64

The same method is available for Index objects and is useful for the cases when you don’t know which of the sought labels are in fact present:

  1. In [159]: s[s.index.isin([2, 4, 6])]
  2. Out[159]:
  3. 4 0
  4. 2 2
  5. dtype: int64
  6. # compare it to the following
  7. In [160]: s.reindex([2, 4, 6])
  8. Out[160]:
  9. 2 2.0
  10. 4 0.0
  11. 6 NaN
  12. dtype: float64

In addition to that, MultiIndex allows selecting a separate level to use in the membership check:

  1. In [161]: s_mi = pd.Series(np.arange(6),
  2. .....: index=pd.MultiIndex.from_product([[0, 1], ['a', 'b', 'c']]))
  3. .....:
  4. In [162]: s_mi
  5. Out[162]:
  6. 0 a 0
  7. b 1
  8. c 2
  9. 1 a 3
  10. b 4
  11. c 5
  12. dtype: int64
  13. In [163]: s_mi.iloc[s_mi.index.isin([(1, 'a'), (2, 'b'), (0, 'c')])]
  14. Out[163]:
  15. 0 c 2
  16. 1 a 3
  17. dtype: int64
  18. In [164]: s_mi.iloc[s_mi.index.isin(['a', 'c', 'e'], level=1)]
  19. Out[164]:
  20. 0 a 0
  21. c 2
  22. 1 a 3
  23. c 5
  24. dtype: int64

DataFrame also has an isin() method. When calling isin, pass a set of values as either an array or dict. If values is an array, isin returns a DataFrame of booleans that is the same shape as the original DataFrame, with True wherever the element is in the sequence of values.

  1. In [165]: df = pd.DataFrame({'vals': [1, 2, 3, 4], 'ids': ['a', 'b', 'f', 'n'],
  2. .....: 'ids2': ['a', 'n', 'c', 'n']})
  3. .....:
  4. In [166]: values = ['a', 'b', 1, 3]
  5. In [167]: df.isin(values)
  6. Out[167]:
  7. vals ids ids2
  8. 0 True True True
  9. 1 False True False
  10. 2 True False False
  11. 3 False False False

Oftentimes you’ll want to match certain values with certain columns. Just make values a dict where the key is the column, and the value is a list of items you want to check for.

  1. In [168]: values = {'ids': ['a', 'b'], 'vals': [1, 3]}
  2. In [169]: df.isin(values)
  3. Out[169]:
  4. vals ids ids2
  5. 0 True True False
  6. 1 False True False
  7. 2 True False False
  8. 3 False False False

Combine DataFrame’s isin with the any() and all() methods to quickly select subsets of your data that meet a given criteria. To select a row where each column meets its own criterion:

  1. In [170]: values = {'ids': ['a', 'b'], 'ids2': ['a', 'c'], 'vals': [1, 3]}
  2. In [171]: row_mask = df.isin(values).all(1)
  3. In [172]: df[row_mask]
  4. Out[172]:
  5. vals ids ids2
  6. 0 1 a a

The where() Method and Masking

Selecting values from a Series with a boolean vector generally returns a subset of the data. To guarantee that selection output has the same shape as the original data, you can use the where method in Series and DataFrame.

To return only the selected rows:

  1. In [173]: s[s > 0]
  2. Out[173]:
  3. 3 1
  4. 2 2
  5. 1 3
  6. 0 4
  7. dtype: int64

To return a Series of the same shape as the original:

  1. In [174]: s.where(s > 0)
  2. Out[174]:
  3. 4 NaN
  4. 3 1.0
  5. 2 2.0
  6. 1 3.0
  7. 0 4.0
  8. dtype: float64

Selecting values from a DataFrame with a boolean criterion now also preserves input data shape. where is used under the hood as the implementation. The code below is equivalent to df.where(df < 0).

  1. In [175]: df[df < 0]
  2. Out[175]:
  3. A B C D
  4. 2000-01-01 -2.104139 -1.309525 NaN NaN
  5. 2000-01-02 -0.352480 NaN -1.192319 NaN
  6. 2000-01-03 -0.864883 NaN -0.227870 NaN
  7. 2000-01-04 NaN -1.222082 NaN -1.233203
  8. 2000-01-05 NaN -0.605656 -1.169184 NaN
  9. 2000-01-06 NaN -0.948458 NaN -0.684718
  10. 2000-01-07 -2.670153 -0.114722 NaN -0.048048
  11. 2000-01-08 NaN NaN -0.048788 -0.808838

In addition, where takes an optional other argument for replacement of values where the condition is False, in the returned copy.

  1. In [176]: df.where(df < 0, -df)
  2. Out[176]:
  3. A B C D
  4. 2000-01-01 -2.104139 -1.309525 -0.485855 -0.245166
  5. 2000-01-02 -0.352480 -0.390389 -1.192319 -1.655824
  6. 2000-01-03 -0.864883 -0.299674 -0.227870 -0.281059
  7. 2000-01-04 -0.846958 -1.222082 -0.600705 -1.233203
  8. 2000-01-05 -0.669692 -0.605656 -1.169184 -0.342416
  9. 2000-01-06 -0.868584 -0.948458 -2.297780 -0.684718
  10. 2000-01-07 -2.670153 -0.114722 -0.168904 -0.048048
  11. 2000-01-08 -0.801196 -1.392071 -0.048788 -0.808838

You may wish to set values based on some boolean criteria. This can be done intuitively like so:

  1. In [177]: s2 = s.copy()
  2. In [178]: s2[s2 < 0] = 0
  3. In [179]: s2
  4. Out[179]:
  5. 4 0
  6. 3 1
  7. 2 2
  8. 1 3
  9. 0 4
  10. dtype: int64
  11. In [180]: df2 = df.copy()
  12. In [181]: df2[df2 < 0] = 0
  13. In [182]: df2
  14. Out[182]:
  15. A B C D
  16. 2000-01-01 0.000000 0.000000 0.485855 0.245166
  17. 2000-01-02 0.000000 0.390389 0.000000 1.655824
  18. 2000-01-03 0.000000 0.299674 0.000000 0.281059
  19. 2000-01-04 0.846958 0.000000 0.600705 0.000000
  20. 2000-01-05 0.669692 0.000000 0.000000 0.342416
  21. 2000-01-06 0.868584 0.000000 2.297780 0.000000
  22. 2000-01-07 0.000000 0.000000 0.168904 0.000000
  23. 2000-01-08 0.801196 1.392071 0.000000 0.000000

By default, where returns a modified copy of the data. There is an optional parameter inplace so that the original data can be modified without creating a copy:

  1. In [183]: df_orig = df.copy()
  2. In [184]: df_orig.where(df > 0, -df, inplace=True)
  3. In [185]: df_orig
  4. Out[185]:
  5. A B C D
  6. 2000-01-01 2.104139 1.309525 0.485855 0.245166
  7. 2000-01-02 0.352480 0.390389 1.192319 1.655824
  8. 2000-01-03 0.864883 0.299674 0.227870 0.281059
  9. 2000-01-04 0.846958 1.222082 0.600705 1.233203
  10. 2000-01-05 0.669692 0.605656 1.169184 0.342416
  11. 2000-01-06 0.868584 0.948458 2.297780 0.684718
  12. 2000-01-07 2.670153 0.114722 0.168904 0.048048
  13. 2000-01-08 0.801196 1.392071 0.048788 0.808838

::: tip Note

The signature for DataFrame.where() differs from numpy.where(). Roughly df1.where(m, df2) is equivalent to np.where(m, df1, df2).

  1. In [186]: df.where(df < 0, -df) == np.where(df < 0, df, -df)
  2. Out[186]:
  3. A B C D
  4. 2000-01-01 True True True True
  5. 2000-01-02 True True True True
  6. 2000-01-03 True True True True
  7. 2000-01-04 True True True True
  8. 2000-01-05 True True True True
  9. 2000-01-06 True True True True
  10. 2000-01-07 True True True True
  11. 2000-01-08 True True True True

:::

Alignment

Furthermore, where aligns the input boolean condition (ndarray or DataFrame), such that partial selection with setting is possible. This is analogous to partial setting via .loc (but on the contents rather than the axis labels).

  1. In [187]: df2 = df.copy()
  2. In [188]: df2[df2[1:4] > 0] = 3
  3. In [189]: df2
  4. Out[189]:
  5. A B C D
  6. 2000-01-01 -2.104139 -1.309525 0.485855 0.245166
  7. 2000-01-02 -0.352480 3.000000 -1.192319 3.000000
  8. 2000-01-03 -0.864883 3.000000 -0.227870 3.000000
  9. 2000-01-04 3.000000 -1.222082 3.000000 -1.233203
  10. 2000-01-05 0.669692 -0.605656 -1.169184 0.342416
  11. 2000-01-06 0.868584 -0.948458 2.297780 -0.684718
  12. 2000-01-07 -2.670153 -0.114722 0.168904 -0.048048
  13. 2000-01-08 0.801196 1.392071 -0.048788 -0.808838

Where can also accept axis and level parameters to align the input when performing the where.

  1. In [190]: df2 = df.copy()
  2. In [191]: df2.where(df2 > 0, df2['A'], axis='index')
  3. Out[191]:
  4. A B C D
  5. 2000-01-01 -2.104139 -2.104139 0.485855 0.245166
  6. 2000-01-02 -0.352480 0.390389 -0.352480 1.655824
  7. 2000-01-03 -0.864883 0.299674 -0.864883 0.281059
  8. 2000-01-04 0.846958 0.846958 0.600705 0.846958
  9. 2000-01-05 0.669692 0.669692 0.669692 0.342416
  10. 2000-01-06 0.868584 0.868584 2.297780 0.868584
  11. 2000-01-07 -2.670153 -2.670153 0.168904 -2.670153
  12. 2000-01-08 0.801196 1.392071 0.801196 0.801196

This is equivalent to (but faster than) the following.

  1. In [192]: df2 = df.copy()
  2. In [193]: df.apply(lambda x, y: x.where(x > 0, y), y=df['A'])
  3. Out[193]:
  4. A B C D
  5. 2000-01-01 -2.104139 -2.104139 0.485855 0.245166
  6. 2000-01-02 -0.352480 0.390389 -0.352480 1.655824
  7. 2000-01-03 -0.864883 0.299674 -0.864883 0.281059
  8. 2000-01-04 0.846958 0.846958 0.600705 0.846958
  9. 2000-01-05 0.669692 0.669692 0.669692 0.342416
  10. 2000-01-06 0.868584 0.868584 2.297780 0.868584
  11. 2000-01-07 -2.670153 -2.670153 0.168904 -2.670153
  12. 2000-01-08 0.801196 1.392071 0.801196 0.801196

New in version 0.18.1.

Where can accept a callable as condition and other arguments. The function must be with one argument (the calling Series or DataFrame) and that returns valid output as condition and other argument.

  1. In [194]: df3 = pd.DataFrame({'A': [1, 2, 3],
  2. .....: 'B': [4, 5, 6],
  3. .....: 'C': [7, 8, 9]})
  4. .....:
  5. In [195]: df3.where(lambda x: x > 4, lambda x: x + 10)
  6. Out[195]:
  7. A B C
  8. 0 11 14 7
  9. 1 12 5 8
  10. 2 13 6 9

Mask

mask() is the inverse boolean operation of where.

  1. In [196]: s.mask(s >= 0)
  2. Out[196]:
  3. 4 NaN
  4. 3 NaN
  5. 2 NaN
  6. 1 NaN
  7. 0 NaN
  8. dtype: float64
  9. In [197]: df.mask(df >= 0)
  10. Out[197]:
  11. A B C D
  12. 2000-01-01 -2.104139 -1.309525 NaN NaN
  13. 2000-01-02 -0.352480 NaN -1.192319 NaN
  14. 2000-01-03 -0.864883 NaN -0.227870 NaN
  15. 2000-01-04 NaN -1.222082 NaN -1.233203
  16. 2000-01-05 NaN -0.605656 -1.169184 NaN
  17. 2000-01-06 NaN -0.948458 NaN -0.684718
  18. 2000-01-07 -2.670153 -0.114722 NaN -0.048048
  19. 2000-01-08 NaN NaN -0.048788 -0.808838

The query() Method

DataFrame objects have a query() method that allows selection using an expression.

You can get the value of the frame where column b has values between the values of columns a and c. For example:

  1. In [198]: n = 10
  2. In [199]: df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc'))
  3. In [200]: df
  4. Out[200]:
  5. a b c
  6. 0 0.438921 0.118680 0.863670
  7. 1 0.138138 0.577363 0.686602
  8. 2 0.595307 0.564592 0.520630
  9. 3 0.913052 0.926075 0.616184
  10. 4 0.078718 0.854477 0.898725
  11. 5 0.076404 0.523211 0.591538
  12. 6 0.792342 0.216974 0.564056
  13. 7 0.397890 0.454131 0.915716
  14. 8 0.074315 0.437913 0.019794
  15. 9 0.559209 0.502065 0.026437
  16. # pure python
  17. In [201]: df[(df.a < df.b) & (df.b < df.c)]
  18. Out[201]:
  19. a b c
  20. 1 0.138138 0.577363 0.686602
  21. 4 0.078718 0.854477 0.898725
  22. 5 0.076404 0.523211 0.591538
  23. 7 0.397890 0.454131 0.915716
  24. # query
  25. In [202]: df.query('(a < b) & (b < c)')
  26. Out[202]:
  27. a b c
  28. 1 0.138138 0.577363 0.686602
  29. 4 0.078718 0.854477 0.898725
  30. 5 0.076404 0.523211 0.591538
  31. 7 0.397890 0.454131 0.915716

Do the same thing but fall back on a named index if there is no column with the name a.

  1. In [203]: df = pd.DataFrame(np.random.randint(n / 2, size=(n, 2)), columns=list('bc'))
  2. In [204]: df.index.name = 'a'
  3. In [205]: df
  4. Out[205]:
  5. b c
  6. a
  7. 0 0 4
  8. 1 0 1
  9. 2 3 4
  10. 3 4 3
  11. 4 1 4
  12. 5 0 3
  13. 6 0 1
  14. 7 3 4
  15. 8 2 3
  16. 9 1 1
  17. In [206]: df.query('a < b and b < c')
  18. Out[206]:
  19. b c
  20. a
  21. 2 3 4

If instead you don’t want to or cannot name your index, you can use the name index in your query expression:

  1. In [207]: df = pd.DataFrame(np.random.randint(n, size=(n, 2)), columns=list('bc'))
  2. In [208]: df
  3. Out[208]:
  4. b c
  5. 0 3 1
  6. 1 3 0
  7. 2 5 6
  8. 3 5 2
  9. 4 7 4
  10. 5 0 1
  11. 6 2 5
  12. 7 0 1
  13. 8 6 0
  14. 9 7 9
  15. In [209]: df.query('index < b < c')
  16. Out[209]:
  17. b c
  18. 2 5 6

::: tip Note

If the name of your index overlaps with a column name, the column name is given precedence. For example,

  1. In [210]: df = pd.DataFrame({'a': np.random.randint(5, size=5)})
  2. In [211]: df.index.name = 'a'
  3. In [212]: df.query('a > 2') # uses the column 'a', not the index
  4. Out[212]:
  5. a
  6. a
  7. 1 3
  8. 3 3

You can still use the index in a query expression by using the special identifier ‘index’:

  1. In [213]: df.query('index > 2')
  2. Out[213]:
  3. a
  4. a
  5. 3 3
  6. 4 2

If for some reason you have a column named index, then you can refer to the index as ilevel_0 as well, but at this point you should consider renaming your columns to something less ambiguous.

:::

MultiIndex query() Syntax

You can also use the levels of a DataFrame with a MultiIndex as if they were columns in the frame:

  1. In [214]: n = 10
  2. In [215]: colors = np.random.choice(['red', 'green'], size=n)
  3. In [216]: foods = np.random.choice(['eggs', 'ham'], size=n)
  4. In [217]: colors
  5. Out[217]:
  6. array(['red', 'red', 'red', 'green', 'green', 'green', 'green', 'green',
  7. 'green', 'green'], dtype='<U5')
  8. In [218]: foods
  9. Out[218]:
  10. array(['ham', 'ham', 'eggs', 'eggs', 'eggs', 'ham', 'ham', 'eggs', 'eggs',
  11. 'eggs'], dtype='<U4')
  12. In [219]: index = pd.MultiIndex.from_arrays([colors, foods], names=['color', 'food'])
  13. In [220]: df = pd.DataFrame(np.random.randn(n, 2), index=index)
  14. In [221]: df
  15. Out[221]:
  16. 0 1
  17. color food
  18. red ham 0.194889 -0.381994
  19. ham 0.318587 2.089075
  20. eggs -0.728293 -0.090255
  21. green eggs -0.748199 1.318931
  22. eggs -2.029766 0.792652
  23. ham 0.461007 -0.542749
  24. ham -0.305384 -0.479195
  25. eggs 0.095031 -0.270099
  26. eggs -0.707140 -0.773882
  27. eggs 0.229453 0.304418
  28. In [222]: df.query('color == "red"')
  29. Out[222]:
  30. 0 1
  31. color food
  32. red ham 0.194889 -0.381994
  33. ham 0.318587 2.089075
  34. eggs -0.728293 -0.090255

If the levels of the MultiIndex are unnamed, you can refer to them using special names:

  1. In [223]: df.index.names = [None, None]
  2. In [224]: df
  3. Out[224]:
  4. 0 1
  5. red ham 0.194889 -0.381994
  6. ham 0.318587 2.089075
  7. eggs -0.728293 -0.090255
  8. green eggs -0.748199 1.318931
  9. eggs -2.029766 0.792652
  10. ham 0.461007 -0.542749
  11. ham -0.305384 -0.479195
  12. eggs 0.095031 -0.270099
  13. eggs -0.707140 -0.773882
  14. eggs 0.229453 0.304418
  15. In [225]: df.query('ilevel_0 == "red"')
  16. Out[225]:
  17. 0 1
  18. red ham 0.194889 -0.381994
  19. ham 0.318587 2.089075
  20. eggs -0.728293 -0.090255

The convention is ilevel_0, which means “index level 0” for the 0th level of the index.

query() Use Cases

A use case for query() is when you have a collection of DataFrame objects that have a subset of column names (or index levels/names) in common. You can pass the same query to both frames without having to specify which frame you’re interested in querying

  1. In [226]: df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc'))
  2. In [227]: df
  3. Out[227]:
  4. a b c
  5. 0 0.224283 0.736107 0.139168
  6. 1 0.302827 0.657803 0.713897
  7. 2 0.611185 0.136624 0.984960
  8. 3 0.195246 0.123436 0.627712
  9. 4 0.618673 0.371660 0.047902
  10. 5 0.480088 0.062993 0.185760
  11. 6 0.568018 0.483467 0.445289
  12. 7 0.309040 0.274580 0.587101
  13. 8 0.258993 0.477769 0.370255
  14. 9 0.550459 0.840870 0.304611
  15. In [228]: df2 = pd.DataFrame(np.random.rand(n + 2, 3), columns=df.columns)
  16. In [229]: df2
  17. Out[229]:
  18. a b c
  19. 0 0.357579 0.229800 0.596001
  20. 1 0.309059 0.957923 0.965663
  21. 2 0.123102 0.336914 0.318616
  22. 3 0.526506 0.323321 0.860813
  23. 4 0.518736 0.486514 0.384724
  24. 5 0.190804 0.505723 0.614533
  25. 6 0.891939 0.623977 0.676639
  26. 7 0.480559 0.378528 0.460858
  27. 8 0.420223 0.136404 0.141295
  28. 9 0.732206 0.419540 0.604675
  29. 10 0.604466 0.848974 0.896165
  30. 11 0.589168 0.920046 0.732716
  31. In [230]: expr = '0.0 <= a <= c <= 0.5'
  32. In [231]: map(lambda frame: frame.query(expr), [df, df2])
  33. Out[231]: <map at 0x7f65f7952d30>

query() Python versus pandas Syntax Comparison

Full numpy-like syntax:

  1. In [232]: df = pd.DataFrame(np.random.randint(n, size=(n, 3)), columns=list('abc'))
  2. In [233]: df
  3. Out[233]:
  4. a b c
  5. 0 7 8 9
  6. 1 1 0 7
  7. 2 2 7 2
  8. 3 6 2 2
  9. 4 2 6 3
  10. 5 3 8 2
  11. 6 1 7 2
  12. 7 5 1 5
  13. 8 9 8 0
  14. 9 1 5 0
  15. In [234]: df.query('(a < b) & (b < c)')
  16. Out[234]:
  17. a b c
  18. 0 7 8 9
  19. In [235]: df[(df.a < df.b) & (df.b < df.c)]
  20. Out[235]:
  21. a b c
  22. 0 7 8 9

Slightly nicer by removing the parentheses (by binding making comparison operators bind tighter than & and |).

  1. In [236]: df.query('a < b & b < c')
  2. Out[236]:
  3. a b c
  4. 0 7 8 9

Use English instead of symbols:

  1. In [237]: df.query('a < b and b < c')
  2. Out[237]:
  3. a b c
  4. 0 7 8 9

Pretty close to how you might write it on paper:

  1. In [238]: df.query('a < b < c')
  2. Out[238]:
  3. a b c
  4. 0 7 8 9

The in and not in operators

query() also supports special use of Python’s in and not in comparison operators, providing a succinct syntax for calling the isin method of a Series or DataFrame.

  1. # get all rows where columns "a" and "b" have overlapping values
  2. In [239]: df = pd.DataFrame({'a': list('aabbccddeeff'), 'b': list('aaaabbbbcccc'),
  3. .....: 'c': np.random.randint(5, size=12),
  4. .....: 'd': np.random.randint(9, size=12)})
  5. .....:
  6. In [240]: df
  7. Out[240]:
  8. a b c d
  9. 0 a a 2 6
  10. 1 a a 4 7
  11. 2 b a 1 6
  12. 3 b a 2 1
  13. 4 c b 3 6
  14. 5 c b 0 2
  15. 6 d b 3 3
  16. 7 d b 2 1
  17. 8 e c 4 3
  18. 9 e c 2 0
  19. 10 f c 0 6
  20. 11 f c 1 2
  21. In [241]: df.query('a in b')
  22. Out[241]:
  23. a b c d
  24. 0 a a 2 6
  25. 1 a a 4 7
  26. 2 b a 1 6
  27. 3 b a 2 1
  28. 4 c b 3 6
  29. 5 c b 0 2
  30. # How you'd do it in pure Python
  31. In [242]: df[df.a.isin(df.b)]
  32. Out[242]:
  33. a b c d
  34. 0 a a 2 6
  35. 1 a a 4 7
  36. 2 b a 1 6
  37. 3 b a 2 1
  38. 4 c b 3 6
  39. 5 c b 0 2
  40. In [243]: df.query('a not in b')
  41. Out[243]:
  42. a b c d
  43. 6 d b 3 3
  44. 7 d b 2 1
  45. 8 e c 4 3
  46. 9 e c 2 0
  47. 10 f c 0 6
  48. 11 f c 1 2
  49. # pure Python
  50. In [244]: df[~df.a.isin(df.b)]
  51. Out[244]:
  52. a b c d
  53. 6 d b 3 3
  54. 7 d b 2 1
  55. 8 e c 4 3
  56. 9 e c 2 0
  57. 10 f c 0 6
  58. 11 f c 1 2

You can combine this with other expressions for very succinct queries:

  1. # rows where cols a and b have overlapping values
  2. # and col c's values are less than col d's
  3. In [245]: df.query('a in b and c < d')
  4. Out[245]:
  5. a b c d
  6. 0 a a 2 6
  7. 1 a a 4 7
  8. 2 b a 1 6
  9. 4 c b 3 6
  10. 5 c b 0 2
  11. # pure Python
  12. In [246]: df[df.b.isin(df.a) & (df.c < df.d)]
  13. Out[246]:
  14. a b c d
  15. 0 a a 2 6
  16. 1 a a 4 7
  17. 2 b a 1 6
  18. 4 c b 3 6
  19. 5 c b 0 2
  20. 10 f c 0 6
  21. 11 f c 1 2

::: tip Note

Note that in and not in are evaluated in Python, since numexpr has no equivalent of this operation. However, only the in/not in expression itself is evaluated in vanilla Python. For example, in the expression

  1. df.query('a in b + c + d')

(b + c + d) is evaluated by numexpr and then the in operation is evaluated in plain Python. In general, any operations that can be evaluated using numexpr will be.

:::

Special use of the == operator with list objects

Comparing a list of values to a column using ==/!= works similarly to in/not in.

  1. In [247]: df.query('b == ["a", "b", "c"]')
  2. Out[247]:
  3. a b c d
  4. 0 a a 2 6
  5. 1 a a 4 7
  6. 2 b a 1 6
  7. 3 b a 2 1
  8. 4 c b 3 6
  9. 5 c b 0 2
  10. 6 d b 3 3
  11. 7 d b 2 1
  12. 8 e c 4 3
  13. 9 e c 2 0
  14. 10 f c 0 6
  15. 11 f c 1 2
  16. # pure Python
  17. In [248]: df[df.b.isin(["a", "b", "c"])]
  18. Out[248]:
  19. a b c d
  20. 0 a a 2 6
  21. 1 a a 4 7
  22. 2 b a 1 6
  23. 3 b a 2 1
  24. 4 c b 3 6
  25. 5 c b 0 2
  26. 6 d b 3 3
  27. 7 d b 2 1
  28. 8 e c 4 3
  29. 9 e c 2 0
  30. 10 f c 0 6
  31. 11 f c 1 2
  32. In [249]: df.query('c == [1, 2]')
  33. Out[249]:
  34. a b c d
  35. 0 a a 2 6
  36. 2 b a 1 6
  37. 3 b a 2 1
  38. 7 d b 2 1
  39. 9 e c 2 0
  40. 11 f c 1 2
  41. In [250]: df.query('c != [1, 2]')
  42. Out[250]:
  43. a b c d
  44. 1 a a 4 7
  45. 4 c b 3 6
  46. 5 c b 0 2
  47. 6 d b 3 3
  48. 8 e c 4 3
  49. 10 f c 0 6
  50. # using in/not in
  51. In [251]: df.query('[1, 2] in c')
  52. Out[251]:
  53. a b c d
  54. 0 a a 2 6
  55. 2 b a 1 6
  56. 3 b a 2 1
  57. 7 d b 2 1
  58. 9 e c 2 0
  59. 11 f c 1 2
  60. In [252]: df.query('[1, 2] not in c')
  61. Out[252]:
  62. a b c d
  63. 1 a a 4 7
  64. 4 c b 3 6
  65. 5 c b 0 2
  66. 6 d b 3 3
  67. 8 e c 4 3
  68. 10 f c 0 6
  69. # pure Python
  70. In [253]: df[df.c.isin([1, 2])]
  71. Out[253]:
  72. a b c d
  73. 0 a a 2 6
  74. 2 b a 1 6
  75. 3 b a 2 1
  76. 7 d b 2 1
  77. 9 e c 2 0
  78. 11 f c 1 2

Boolean operators

You can negate boolean expressions with the word not or the ~ operator.

  1. In [254]: df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc'))
  2. In [255]: df['bools'] = np.random.rand(len(df)) > 0.5
  3. In [256]: df.query('~bools')
  4. Out[256]:
  5. a b c bools
  6. 2 0.697753 0.212799 0.329209 False
  7. 7 0.275396 0.691034 0.826619 False
  8. 8 0.190649 0.558748 0.262467 False
  9. In [257]: df.query('not bools')
  10. Out[257]:
  11. a b c bools
  12. 2 0.697753 0.212799 0.329209 False
  13. 7 0.275396 0.691034 0.826619 False
  14. 8 0.190649 0.558748 0.262467 False
  15. In [258]: df.query('not bools') == df[~df.bools]
  16. Out[258]:
  17. a b c bools
  18. 2 True True True True
  19. 7 True True True True
  20. 8 True True True True

Of course, expressions can be arbitrarily complex too:

  1. # short query syntax
  2. In [259]: shorter = df.query('a < b < c and (not bools) or bools > 2')
  3. # equivalent in pure Python
  4. In [260]: longer = df[(df.a < df.b) & (df.b < df.c) & (~df.bools) | (df.bools > 2)]
  5. In [261]: shorter
  6. Out[261]:
  7. a b c bools
  8. 7 0.275396 0.691034 0.826619 False
  9. In [262]: longer
  10. Out[262]:
  11. a b c bools
  12. 7 0.275396 0.691034 0.826619 False
  13. In [263]: shorter == longer
  14. Out[263]:
  15. a b c bools
  16. 7 True True True True

Performance of query()

DataFrame.query() using numexpr is slightly faster than Python for large frames.

query-perf

::: tip Note

You will only see the performance benefits of using the numexpr engine with DataFrame.query() if your frame has more than approximately 200,000 rows.

query-perf-small

:::

This plot was created using a DataFrame with 3 columns each containing floating point values generated using numpy.random.randn().

Duplicate data

If you want to identify and remove duplicate rows in a DataFrame, there are two methods that will help: duplicated and drop_duplicates. Each takes as an argument the columns to use to identify duplicated rows.

  • duplicated returns a boolean vector whose length is the number of rows, and which indicates whether a row is duplicated.
  • drop_duplicates removes duplicate rows.

By default, the first observed row of a duplicate set is considered unique, but each method has a keep parameter to specify targets to be kept.

  • keep='first' (default): mark / drop duplicates except for the first occurrence.
  • keep='last': mark / drop duplicates except for the last occurrence.
  • keep=False: mark / drop all duplicates.
  1. In [264]: df2 = pd.DataFrame({'a': ['one', 'one', 'two', 'two', 'two', 'three', 'four'],
  2. .....: 'b': ['x', 'y', 'x', 'y', 'x', 'x', 'x'],
  3. .....: 'c': np.random.randn(7)})
  4. .....:
  5. In [265]: df2
  6. Out[265]:
  7. a b c
  8. 0 one x -1.067137
  9. 1 one y 0.309500
  10. 2 two x -0.211056
  11. 3 two y -1.842023
  12. 4 two x -0.390820
  13. 5 three x -1.964475
  14. 6 four x 1.298329
  15. In [266]: df2.duplicated('a')
  16. Out[266]:
  17. 0 False
  18. 1 True
  19. 2 False
  20. 3 True
  21. 4 True
  22. 5 False
  23. 6 False
  24. dtype: bool
  25. In [267]: df2.duplicated('a', keep='last')
  26. Out[267]:
  27. 0 True
  28. 1 False
  29. 2 True
  30. 3 True
  31. 4 False
  32. 5 False
  33. 6 False
  34. dtype: bool
  35. In [268]: df2.duplicated('a', keep=False)
  36. Out[268]:
  37. 0 True
  38. 1 True
  39. 2 True
  40. 3 True
  41. 4 True
  42. 5 False
  43. 6 False
  44. dtype: bool
  45. In [269]: df2.drop_duplicates('a')
  46. Out[269]:
  47. a b c
  48. 0 one x -1.067137
  49. 2 two x -0.211056
  50. 5 three x -1.964475
  51. 6 four x 1.298329
  52. In [270]: df2.drop_duplicates('a', keep='last')
  53. Out[270]:
  54. a b c
  55. 1 one y 0.309500
  56. 4 two x -0.390820
  57. 5 three x -1.964475
  58. 6 four x 1.298329
  59. In [271]: df2.drop_duplicates('a', keep=False)
  60. Out[271]:
  61. a b c
  62. 5 three x -1.964475
  63. 6 four x 1.298329

Also, you can pass a list of columns to identify duplications.

  1. In [272]: df2.duplicated(['a', 'b'])
  2. Out[272]:
  3. 0 False
  4. 1 False
  5. 2 False
  6. 3 False
  7. 4 True
  8. 5 False
  9. 6 False
  10. dtype: bool
  11. In [273]: df2.drop_duplicates(['a', 'b'])
  12. Out[273]:
  13. a b c
  14. 0 one x -1.067137
  15. 1 one y 0.309500
  16. 2 two x -0.211056
  17. 3 two y -1.842023
  18. 5 three x -1.964475
  19. 6 four x 1.298329

To drop duplicates by index value, use Index.duplicated then perform slicing. The same set of options are available for the keep parameter.

  1. In [274]: df3 = pd.DataFrame({'a': np.arange(6),
  2. .....: 'b': np.random.randn(6)},
  3. .....: index=['a', 'a', 'b', 'c', 'b', 'a'])
  4. .....:
  5. In [275]: df3
  6. Out[275]:
  7. a b
  8. a 0 1.440455
  9. a 1 2.456086
  10. b 2 1.038402
  11. c 3 -0.894409
  12. b 4 0.683536
  13. a 5 3.082764
  14. In [276]: df3.index.duplicated()
  15. Out[276]: array([False, True, False, False, True, True])
  16. In [277]: df3[~df3.index.duplicated()]
  17. Out[277]:
  18. a b
  19. a 0 1.440455
  20. b 2 1.038402
  21. c 3 -0.894409
  22. In [278]: df3[~df3.index.duplicated(keep='last')]
  23. Out[278]:
  24. a b
  25. c 3 -0.894409
  26. b 4 0.683536
  27. a 5 3.082764
  28. In [279]: df3[~df3.index.duplicated(keep=False)]
  29. Out[279]:
  30. a b
  31. c 3 -0.894409

Dictionary-like get() method

Each of Series or DataFrame have a get method which can return a default value.

  1. In [280]: s = pd.Series([1, 2, 3], index=['a', 'b', 'c'])
  2. In [281]: s.get('a') # equivalent to s['a']
  3. Out[281]: 1
  4. In [282]: s.get('x', default=-1)
  5. Out[282]: -1

The lookup() method

Sometimes you want to extract a set of values given a sequence of row labels and column labels, and the lookup method allows for this and returns a NumPy array. For instance:

  1. In [283]: dflookup = pd.DataFrame(np.random.rand(20, 4), columns = ['A', 'B', 'C', 'D'])
  2. In [284]: dflookup.lookup(list(range(0, 10, 2)), ['B', 'C', 'A', 'B', 'D'])
  3. Out[284]: array([0.3506, 0.4779, 0.4825, 0.9197, 0.5019])

Index objects

The pandas Index class and its subclasses can be viewed as implementing an ordered multiset. Duplicates are allowed. However, if you try to convert an Index object with duplicate entries into a set, an exception will be raised.

Index also provides the infrastructure necessary for lookups, data alignment, and reindexing. The easiest way to create an Index directly is to pass a list or other sequence to Index:

  1. In [285]: index = pd.Index(['e', 'd', 'a', 'b'])
  2. In [286]: index
  3. Out[286]: Index(['e', 'd', 'a', 'b'], dtype='object')
  4. In [287]: 'd' in index
  5. Out[287]: True

You can also pass a name to be stored in the index:

  1. In [288]: index = pd.Index(['e', 'd', 'a', 'b'], name='something')
  2. In [289]: index.name
  3. Out[289]: 'something'

The name, if set, will be shown in the console display:

  1. In [290]: index = pd.Index(list(range(5)), name='rows')
  2. In [291]: columns = pd.Index(['A', 'B', 'C'], name='cols')
  3. In [292]: df = pd.DataFrame(np.random.randn(5, 3), index=index, columns=columns)
  4. In [293]: df
  5. Out[293]:
  6. cols A B C
  7. rows
  8. 0 1.295989 0.185778 0.436259
  9. 1 0.678101 0.311369 -0.528378
  10. 2 -0.674808 -1.103529 -0.656157
  11. 3 1.889957 2.076651 -1.102192
  12. 4 -1.211795 -0.791746 0.634724
  13. In [294]: df['A']
  14. Out[294]:
  15. rows
  16. 0 1.295989
  17. 1 0.678101
  18. 2 -0.674808
  19. 3 1.889957
  20. 4 -1.211795
  21. Name: A, dtype: float64

Setting metadata

Indexes are “mostly immutable”, but it is possible to set and change their metadata, like the index name (or, for MultiIndex, levels and codes).

You can use the rename, set_names, set_levels, and set_codes to set these attributes directly. They default to returning a copy; however, you can specify inplace=True to have the data change in place.

See Advanced Indexing for usage of MultiIndexes.

  1. In [295]: ind = pd.Index([1, 2, 3])
  2. In [296]: ind.rename("apple")
  3. Out[296]: Int64Index([1, 2, 3], dtype='int64', name='apple')
  4. In [297]: ind
  5. Out[297]: Int64Index([1, 2, 3], dtype='int64')
  6. In [298]: ind.set_names(["apple"], inplace=True)
  7. In [299]: ind.name = "bob"
  8. In [300]: ind
  9. Out[300]: Int64Index([1, 2, 3], dtype='int64', name='bob')

set_names, set_levels, and set_codes also take an optional level argument

  1. In [301]: index = pd.MultiIndex.from_product([range(3), ['one', 'two']], names=['first', 'second'])
  2. In [302]: index
  3. Out[302]:
  4. MultiIndex([(0, 'one'),
  5. (0, 'two'),
  6. (1, 'one'),
  7. (1, 'two'),
  8. (2, 'one'),
  9. (2, 'two')],
  10. names=['first', 'second'])
  11. In [303]: index.levels[1]
  12. Out[303]: Index(['one', 'two'], dtype='object', name='second')
  13. In [304]: index.set_levels(["a", "b"], level=1)
  14. Out[304]:
  15. MultiIndex([(0, 'a'),
  16. (0, 'b'),
  17. (1, 'a'),
  18. (1, 'b'),
  19. (2, 'a'),
  20. (2, 'b')],
  21. names=['first', 'second'])

Set operations on Index objects

The two main operations are union (|) and intersection (&). These can be directly called as instance methods or used via overloaded operators. Difference is provided via the .difference() method.

  1. In [305]: a = pd.Index(['c', 'b', 'a'])
  2. In [306]: b = pd.Index(['c', 'e', 'd'])
  3. In [307]: a | b
  4. Out[307]: Index(['a', 'b', 'c', 'd', 'e'], dtype='object')
  5. In [308]: a & b
  6. Out[308]: Index(['c'], dtype='object')
  7. In [309]: a.difference(b)
  8. Out[309]: Index(['a', 'b'], dtype='object')

Also available is the symmetric_difference (^) operation, which returns elements that appear in either idx1 or idx2, but not in both. This is equivalent to the Index created by idx1.difference(idx2).union(idx2.difference(idx1)), with duplicates dropped.

  1. In [310]: idx1 = pd.Index([1, 2, 3, 4])
  2. In [311]: idx2 = pd.Index([2, 3, 4, 5])
  3. In [312]: idx1.symmetric_difference(idx2)
  4. Out[312]: Int64Index([1, 5], dtype='int64')
  5. In [313]: idx1 ^ idx2
  6. Out[313]: Int64Index([1, 5], dtype='int64')

::: tip Note

The resulting index from a set operation will be sorted in ascending order.

:::

When performing Index.union() between indexes with different dtypes, the indexes must be cast to a common dtype. Typically, though not always, this is object dtype. The exception is when performing a union between integer and float data. In this case, the integer values are converted to float

  1. In [314]: idx1 = pd.Index([0, 1, 2])
  2. In [315]: idx2 = pd.Index([0.5, 1.5])
  3. In [316]: idx1 | idx2
  4. Out[316]: Float64Index([0.0, 0.5, 1.0, 1.5, 2.0], dtype='float64')

Missing values

Even though Index can hold missing values (NaN), it should be avoided if you do not want any unexpected results. For example, some operations exclude missing values implicitly.

Index.fillna fills missing values with specified scalar value.

  1. In [317]: idx1 = pd.Index([1, np.nan, 3, 4])
  2. In [318]: idx1
  3. Out[318]: Float64Index([1.0, nan, 3.0, 4.0], dtype='float64')
  4. In [319]: idx1.fillna(2)
  5. Out[319]: Float64Index([1.0, 2.0, 3.0, 4.0], dtype='float64')
  6. In [320]: idx2 = pd.DatetimeIndex([pd.Timestamp('2011-01-01'),
  7. .....: pd.NaT,
  8. .....: pd.Timestamp('2011-01-03')])
  9. .....:
  10. In [321]: idx2
  11. Out[321]: DatetimeIndex(['2011-01-01', 'NaT', '2011-01-03'], dtype='datetime64[ns]', freq=None)
  12. In [322]: idx2.fillna(pd.Timestamp('2011-01-02'))
  13. Out[322]: DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], dtype='datetime64[ns]', freq=None)

Set / reset index

Occasionally you will load or create a data set into a DataFrame and want to add an index after you’ve already done so. There are a couple of different ways.

Set an index

DataFrame has a set_index() method which takes a column name (for a regular Index) or a list of column names (for a MultiIndex). To create a new, re-indexed DataFrame:

  1. In [323]: data
  2. Out[323]:
  3. a b c d
  4. 0 bar one z 1.0
  5. 1 bar two y 2.0
  6. 2 foo one x 3.0
  7. 3 foo two w 4.0
  8. In [324]: indexed1 = data.set_index('c')
  9. In [325]: indexed1
  10. Out[325]:
  11. a b d
  12. c
  13. z bar one 1.0
  14. y bar two 2.0
  15. x foo one 3.0
  16. w foo two 4.0
  17. In [326]: indexed2 = data.set_index(['a', 'b'])
  18. In [327]: indexed2
  19. Out[327]:
  20. c d
  21. a b
  22. bar one z 1.0
  23. two y 2.0
  24. foo one x 3.0
  25. two w 4.0

The append keyword option allow you to keep the existing index and append the given columns to a MultiIndex:

  1. In [328]: frame = data.set_index('c', drop=False)
  2. In [329]: frame = frame.set_index(['a', 'b'], append=True)
  3. In [330]: frame
  4. Out[330]:
  5. c d
  6. c a b
  7. z bar one z 1.0
  8. y bar two y 2.0
  9. x foo one x 3.0
  10. w foo two w 4.0

Other options in set_index allow you not drop the index columns or to add the index in-place (without creating a new object):

  1. In [331]: data.set_index('c', drop=False)
  2. Out[331]:
  3. a b c d
  4. c
  5. z bar one z 1.0
  6. y bar two y 2.0
  7. x foo one x 3.0
  8. w foo two w 4.0
  9. In [332]: data.set_index(['a', 'b'], inplace=True)
  10. In [333]: data
  11. Out[333]:
  12. c d
  13. a b
  14. bar one z 1.0
  15. two y 2.0
  16. foo one x 3.0
  17. two w 4.0

Reset the index

As a convenience, there is a new function on DataFrame called reset_index() which transfers the index values into the DataFrame’s columns and sets a simple integer index. This is the inverse operation of set_index().

  1. In [334]: data
  2. Out[334]:
  3. c d
  4. a b
  5. bar one z 1.0
  6. two y 2.0
  7. foo one x 3.0
  8. two w 4.0
  9. In [335]: data.reset_index()
  10. Out[335]:
  11. a b c d
  12. 0 bar one z 1.0
  13. 1 bar two y 2.0
  14. 2 foo one x 3.0
  15. 3 foo two w 4.0

The output is more similar to a SQL table or a record array. The names for the columns derived from the index are the ones stored in the names attribute.

You can use the level keyword to remove only a portion of the index:

  1. In [336]: frame
  2. Out[336]:
  3. c d
  4. c a b
  5. z bar one z 1.0
  6. y bar two y 2.0
  7. x foo one x 3.0
  8. w foo two w 4.0
  9. In [337]: frame.reset_index(level=1)
  10. Out[337]:
  11. a c d
  12. c b
  13. z one bar z 1.0
  14. y two bar y 2.0
  15. x one foo x 3.0
  16. w two foo w 4.0

reset_index takes an optional parameter drop which if true simply discards the index, instead of putting index values in the DataFrame’s columns.

Adding an ad hoc index

If you create an index yourself, you can just assign it to the index field:

  1. data.index = index

Returning a view versus a copy

When setting values in a pandas object, care must be taken to avoid what is called chained indexing. Here is an example.

  1. In [338]: dfmi = pd.DataFrame([list('abcd'),
  2. .....: list('efgh'),
  3. .....: list('ijkl'),
  4. .....: list('mnop')],
  5. .....: columns=pd.MultiIndex.from_product([['one', 'two'],
  6. .....: ['first', 'second']]))
  7. .....:
  8. In [339]: dfmi
  9. Out[339]:
  10. one two
  11. first second first second
  12. 0 a b c d
  13. 1 e f g h
  14. 2 i j k l
  15. 3 m n o p

Compare these two access methods:

  1. In [340]: dfmi['one']['second']
  2. Out[340]:
  3. 0 b
  4. 1 f
  5. 2 j
  6. 3 n
  7. Name: second, dtype: object
  1. In [341]: dfmi.loc[:, ('one', 'second')]
  2. Out[341]:
  3. 0 b
  4. 1 f
  5. 2 j
  6. 3 n
  7. Name: (one, second), dtype: object

These both yield the same results, so which should you use? It is instructive to understand the order of operations on these and why method 2 (.loc) is much preferred over method 1 (chained []).

dfmi['one'] selects the first level of the columns and returns a DataFrame that is singly-indexed. Then another Python operation dfmi_with_one['second'] selects the series indexed by 'second'. This is indicated by the variable dfmi_with_one because pandas sees these operations as separate events. e.g. separate calls to __getitem__, so it has to treat them as linear operations, they happen one after another.

Contrast this to df.loc[:,('one','second')] which passes a nested tuple of (slice(None),('one','second')) to a single call to __getitem__. This allows pandas to deal with this as a single entity. Furthermore this order of operations can be significantly faster, and allows one to index both axes if so desired.

Why does assignment fail when using chained indexing?

The problem in the previous section is just a performance issue. What’s up with the SettingWithCopy warning? We don’t usually throw warnings around when you do something that might cost a few extra milliseconds!

But it turns out that assigning to the product of chained indexing has inherently unpredictable results. To see this, think about how the Python interpreter executes this code:

  1. dfmi.loc[:, ('one', 'second')] = value
  2. # becomes
  3. dfmi.loc.__setitem__((slice(None), ('one', 'second')), value)

But this code is handled differently:

  1. dfmi['one']['second'] = value
  2. # becomes
  3. dfmi.__getitem__('one').__setitem__('second', value)

See that __getitem__ in there? Outside of simple cases, it’s very hard to predict whether it will return a view or a copy (it depends on the memory layout of the array, about which pandas makes no guarantees), and therefore whether the __setitem__ will modify dfmi or a temporary object that gets thrown out immediately afterward. That’s what SettingWithCopy is warning you about!

::: tip Note

You may be wondering whether we should be concerned about the loc property in the first example. But dfmi.loc is guaranteed to be dfmi itself with modified indexing behavior, so dfmi.loc.__getitem__ / dfmi.loc.__setitem__ operate on dfmi directly. Of course, dfmi.loc.__getitem__(idx) may be a view or a copy of dfmi.

:::

Sometimes a SettingWithCopy warning will arise at times when there’s no obvious chained indexing going on. These are the bugs that SettingWithCopy is designed to catch! Pandas is probably trying to warn you that you’ve done this:

  1. def do_something(df):
  2. foo = df[['bar', 'baz']] # Is foo a view? A copy? Nobody knows!
  3. # ... many lines here ...
  4. # We don't know whether this will modify df or not!
  5. foo['quux'] = value
  6. return foo

Yikes!

Evaluation order matters

When you use chained indexing, the order and type of the indexing operation partially determine whether the result is a slice into the original object, or a copy of the slice.

Pandas has the SettingWithCopyWarning because assigning to a copy of a slice is frequently not intentional, but a mistake caused by chained indexing returning a copy where a slice was expected.

If you would like pandas to be more or less trusting about assignment to a chained indexing expression, you can set the option mode.chained_assignment to one of these values:

  • 'warn', the default, means a SettingWithCopyWarning is printed.
  • 'raise' means pandas will raise a SettingWithCopyException you have to deal with.
  • None will suppress the warnings entirely.
  1. In [342]: dfb = pd.DataFrame({'a': ['one', 'one', 'two',
  2. .....: 'three', 'two', 'one', 'six'],
  3. .....: 'c': np.arange(7)})
  4. .....:
  5. # This will show the SettingWithCopyWarning
  6. # but the frame values will be set
  7. In [343]: dfb['c'][dfb.a.str.startswith('o')] = 42

This however is operating on a copy and will not work.

  1. >>> pd.set_option('mode.chained_assignment','warn')
  2. >>> dfb[dfb.a.str.startswith('o')]['c'] = 42
  3. Traceback (most recent call last)
  4. ...
  5. SettingWithCopyWarning:
  6. A value is trying to be set on a copy of a slice from a DataFrame.
  7. Try using .loc[row_index,col_indexer] = value instead

A chained assignment can also crop up in setting in a mixed dtype frame.

::: tip Note

These setting rules apply to all of .loc/.iloc.

:::

This is the correct access method:

  1. In [344]: dfc = pd.DataFrame({'A': ['aaa', 'bbb', 'ccc'], 'B': [1, 2, 3]})
  2. In [345]: dfc.loc[0, 'A'] = 11
  3. In [346]: dfc
  4. Out[346]:
  5. A B
  6. 0 11 1
  7. 1 bbb 2
  8. 2 ccc 3

This can work at times, but it is not guaranteed to, and therefore should be avoided:

  1. In [347]: dfc = dfc.copy()
  2. In [348]: dfc['A'][0] = 111
  3. In [349]: dfc
  4. Out[349]:
  5. A B
  6. 0 111 1
  7. 1 bbb 2
  8. 2 ccc 3

This will not work at all, and so should be avoided:

  1. >>> pd.set_option('mode.chained_assignment','raise')
  2. >>> dfc.loc[0]['A'] = 1111
  3. Traceback (most recent call last)
  4. ...
  5. SettingWithCopyException:
  6. A value is trying to be set on a copy of a slice from a DataFrame.
  7. Try using .loc[row_index,col_indexer] = value instead

::: danger Warning

The chained assignment warnings / exceptions are aiming to inform the user of a possibly invalid assignment. There may be false positives; situations where a chained assignment is inadvertently reported.

:::