IO工具(文本,CSV,HDF5,…)

pandas的I/O API是一组read函数,比如pandas.read_csv()函数。这类函数可以返回pandas对象。相应的write函数是像DataFrame.to_csv()一样的对象方法。下面是一个方法列表,包含了这里面的所有readers函数和writer函数。

Format Type Data Description Reader Writer
text CSV read_csv to_csv
text JSON read_json to_json
text HTML read_html to_html
text Local clipboard read_clipboard to_clipboard
binary MS Excel read_excel to_excel
binary OpenDocument read_excel
binary HDF5 Format read_hdf to_hdf
binary Feather Format read_feather to_feather
binary Parquet Format read_parquet to_parquet
binary Msgpack read_msgpack to_msgpack
binary Stata read_stata to_stata
binary SAS) read_sas
binary Python Pickle Format read_pickle to_pickle
SQL SQL read_sql to_sql
SQL Google Big Query read_gbq to_gbq

Here is an informal performance comparison for some of these IO methods.

::: tip 注意

比如在使用 StringIO 类时, 请先确定python的版本信息。也就是说,是使用python2的from StringIO import StringIO还是python3的from io import StringIO

:::

CSV & 文本文件

读文本文件 (a.k.a. flat files)的主要方法 is read_csv(). 关于一些更高级的用法请参阅cookbook

方法解析(Parsing options)

read_csv() 可接受以下常用参数:

基础

filepath_or_buffer : various

  • 文件路径 (a str, pathlib.Path, or py._path.local.LocalPath), URL (including http, ftp, and S3 locations), 或者具有 read() 方法的任何对象 (such as an open file or StringIO).

sep : str, 默认 read_csv()分隔符为',', read_table()方法,分隔符为 \t

  • 分隔符的使用. 如果分隔符为None,虽然C不能解析,但python解析引擎可解析,这意味着python将被使用,通过内置的sniffer tool自动检测分隔符, csv.Sniffer. 除此之外,字符长度超过1并且不同于 's+' 的将被视为正则表达式,并且将强制使用python解析引擎。需要注意的是,正则表达式易于忽略引用数据(主要注意转义字符的使用) 例如: '\\r\\t'.

delimiter : str, default None

  • sep的替代参数.

delim_whitespace : boolean, default False

  • 指定是否将空格 (e.g. ' ' or '\t')当作delimiter。 等价于设置 sep='\s+'. 如果这个选项被设置为 True,就不要给 delimiter 传参了.

version 0.18.1: 支持Python解析器.

列、索引、名称

header : int or list of ints, default 'infer'

  • 当选择默认值或header=0时,将首行设为列名。如果列名被传入明确值就令header=None。注意,当header=0时,即使列名被传参也会被覆盖。
  • 标题可以是指定列上的MultiIndex的行位置的整数列表,例如 [0,1,3]。在列名指定时,若某列未被指定,读取时将跳过该列 (例如 在下面的例子中第二列将被跳过).注意,如果 skip_blank_lines=True,此参数将忽略空行和注释行, 因此 header=0 表示第一行数据而非文件的第一行.

names : array-like, default None

  • 列名列表的使用. 如果文件不包含列名,那么应该设置header=None。 列名列表中不允许有重复值.

index_col : int, str, sequence of int / str, or False, default None

  • DataFrame的行索引列表, 既可以是字符串名称也可以是列索引. 如果传入一个字符串序列或者整数序列,那么一定要使用多级索引(MultiIndex).

  • 注意: 当index_col=False ,pandas不再使用首列作为索引。例如, 当你的文件是一个每行末尾都带有一个分割符的格式错误的文件时.

usecols : list-like or callable, default None

  • 返回列名列表的子集. 如果该参数为列表形式, 那么所有元素应全为位置(即文档列中的整数索引)或者 全为相应列的列名字符串(这些列名字符串为names参数给出的或者文档的header行内容).例如,一个有效的列表型参数 usecols 将会是是 [0, 1, 2] 或者 ['foo', 'bar', 'baz'].

  • 元素顺序可忽略,因此 usecols=[0, 1]等价于 [1, 0]。如果想实例化一个自定义列顺序的DataFrame,请使用pd.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']] ,这样列的顺序为 ['foo', 'bar'] 。如果设置pd.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']] 那么列的顺序为['bar', 'foo']

  • 如果使用callable的方式, 可调用函数将根据列名计算, 返回可调用函数计算结果为True的名称:

  1. In [1]: from io import StringIO, BytesIO
  2. In [2]: data = ('col1,col2,col3\n'
  3. ...: 'a,b,1\n'
  4. ...: 'a,b,2\n'
  5. ...: 'c,d,3')
  6. ...:
  7. In [3]: pd.read_csv(StringIO(data))
  8. Out[3]:
  9. col1 col2 col3
  10. 0 a b 1
  11. 1 a b 2
  12. 2 c d 3
  13. In [4]: pd.read_csv(StringIO(data), usecols=lambda x: x.upper() in ['COL1', 'COL3'])
  14. Out[4]:
  15. col1 col3
  16. 0 a 1
  17. 1 a 2
  18. 2 c 3

使用此参数可以大大加快解析时间并降低内存使用率。

squeeze : boolean, default False

  • 如果解析的数据仅包含一个列,那么结果将以 Series的形式返回.

prefix : str, default None

  • 当没有header时,可通过该参数为数字列名添加前缀, e.g. ‘X’ for X0, X1, …

mangle_dupe_cols : boolean, default True

  • 当列名有重复时,解析列名将变为 ‘X’, ‘X.1’…’X.N’而不是 ‘X’…’X’。 如果该参数为 False ,那么当列名中有重复时,前列将会被后列覆盖。

常规解析配置

dtype : Type name or dict of column -> type, default None

  • 指定某列或整体数据的数据类型. E.g. {'a': np.float64, 'b': np.int32} (不支持 engine='python').将strobject与合适的设置一起使用以保留和不解释dtype。

  • New in version 0.20.0: 支持python解析器.

engine : {'c', 'python'}

  • 解析引擎的使用。 尽管C引擎速度更快,但是目前python引擎功能更加完美。

converters : dict, default None

  • Dict of functions for converting values in certain columns. Keys can either be integers or column labels.

true_values : list, default None

  • Values to consider as True.

false_values : list, default None

  • Values to consider as False.

skipinitialspace : boolean, default False

  • Skip spaces after delimiter.

skiprows : list-like or integer, default None

  • Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file.

  • If callable, the callable function will be evaluated against the row indices, returning True if the row should be skipped and False otherwise:

  1. In [5]: data = ('col1,col2,col3\n'
  2. ...: 'a,b,1\n'
  3. ...: 'a,b,2\n'
  4. ...: 'c,d,3')
  5. ...:
  6. In [6]: pd.read_csv(StringIO(data))
  7. Out[6]:
  8. col1 col2 col3
  9. 0 a b 1
  10. 1 a b 2
  11. 2 c d 3
  12. In [7]: pd.read_csv(StringIO(data), skiprows=lambda x: x % 2 != 0)
  13. Out[7]:
  14. col1 col2 col3
  15. 0 a b 2

skipfooter : int, default 0

  • Number of lines at bottom of file to skip (unsupported with engine=’c’).

nrows : int, default None

  • Number of rows of file to read. Useful for reading pieces of large files.

low_memory : boolean, default True

  • Internally process the file in chunks, resulting in lower memory use while parsing, but possibly mixed type inference. To ensure no mixed types either set False, or specify the type with the dtype parameter. Note that the entire file is read into a single DataFrame regardless, use the chunksize or iterator parameter to return the data in chunks. (Only valid with C parser)

memory_map : boolean, default False

  • If a filepath is provided for filepath_or_buffer, map the file object directly onto memory and access the data directly from there. Using this option can improve performance because there is no longer any I/O overhead.

NA and missing data handling

na_values : scalar, str, list-like, or dict, default None

  • Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. See na values const below for a list of the values interpreted as NaN by default.

keep_default_na : boolean, default True

  • Whether or not to include the default NaN values when parsing the data. Depending on whether na_values is passed in, the behavior is as follows:

    • If keep_default_na is True, and na_values are specified, na_values is appended to the default NaN values used for parsing.
    • If keep_default_na is True, and na_values are not specified, only the default NaN values are used for parsing.
    • If keep_default_na is False, and na_values are specified, only the NaN values specified na_values are used for parsing.
    • If keep_default_na is False, and na_values are not specified, no strings will be parsed as NaN.

    Note that if na_filter is passed in as False, the keep_default_na and na_values parameters will be ignored.

na_filter : boolean, default True

  • Detect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False can improve the performance of reading a large file.

verbose : boolean, default False

  • Indicate number of NA values placed in non-numeric columns.

skip_blank_lines : boolean, default True

  • If True, skip over blank lines rather than interpreting as NaN values.

Datetime handling

parse_dates : boolean or list of ints or names or list of lists or dict, default False.

  • If True -> try parsing the index.
  • If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column.
  • If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column.
  • If {'foo': [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’. A fast-path exists for iso8601-formatted dates.

infer_datetime_format : boolean, default False

  • If True and parse_dates is enabled for a column, attempt to infer the datetime format to speed up the processing.

keep_date_col : boolean, default False

  • If True and parse_dates specifies combining multiple columns then keep the original columns.

date_parser : function, default None

  • Function to use for converting a sequence of string columns to an array of datetime instances. The default uses dateutil.parser.parser to do the conversion. pandas will try to call date_parser in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined by parse_dates) as arguments; 2) concatenate (row-wise) the string values from the columns defined by parse_dates into a single array and pass that; and 3) call date_parser once for each row using one or more strings (corresponding to the columns defined by parse_dates) as arguments.

dayfirst : boolean, default False

  • DD/MM format dates, international and European format.

cache_dates : boolean, default True

  • If True, use a cache of unique, converted dates to apply the datetime conversion. May produce significant speed-up when parsing duplicate date strings, especially ones with timezone offsets.

New in version 0.25.0.

Iteration

iterator : boolean, default False

  • Return TextFileReader object for iteration or getting chunks with get_chunk().

chunksize : int, default None

Quoting, compression, and file format

compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}, default 'infer'

  • For on-the-fly decompression of on-disk data. If ‘infer’, then use gzip, bz2, zip, or xz if filepath_or_buffer is a string ending in ‘.gz’, ‘.bz2’, ‘.zip’, or ‘.xz’, respectively, and no decompression otherwise. If using ‘zip’, the ZIP file must contain only one data file to be read in. Set to None for no decompression.

New in version 0.18.1: support for ‘zip’ and ‘xz’ compression.

Changed in version 0.24.0: ‘infer’ option added and set to default.

thousands : str, default None

  • Thousands separator.

decimal : str, default '.'

  • Character to recognize as decimal point. E.g. use ‘,’ for European data.

float_precision : string, default None

  • Specifies which converter the C engine should use for floating-point values. The options are None for the ordinary converter, high for the high-precision converter, and round_trip for the round-trip converter.

lineterminator : str (length 1), default None

  • Character to break file into lines. Only valid with C parser.

quotechar : str (length 1)

  • The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored.

quoting : int or ``csv.QUOTE_instance, default0``*

  • Control field quoting behavior per csv.QUOTE_* constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3).

doublequote : boolean, default True

  • When quotechar is specified and quoting is not QUOTE_NONE, indicate whether or not to interpret two consecutive quotechar elements inside a field as a single quotechar element.

escapechar : str (length 1), default None

  • One-character string used to escape delimiter when quoting is QUOTE_NONE.

comment : str, default None

  • Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long as skip_blank_lines=True), fully commented lines are ignored by the parameter header but not by skiprows. For example, if comment='#', parsing ‘#empty a,b,c 1,2,3’ with header=0 will result in ‘a,b,c’ being treated as the header.

encoding : str, default None

dialect : str or csv.Dialect instance, default None

  • If provided, this parameter will override values (default or not) for the following parameters: delimiter, doublequote, escapechar, skipinitialspace, quotechar, and quoting. If it is necessary to override values, a ParserWarning will be issued. See csv.Dialect documentation for more details.

Error handling

error_bad_lines : boolean, default True

  • Lines with too many fields (e.g. a csv line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If False, then these “bad lines” will dropped from the DataFrame that is returned. See bad lines below.

warn_bad_lines : boolean, default True

  • If error_bad_lines is False, and warn_bad_lines is True, a warning for each “bad line” will be output.

Specifying column data types

You can indicate the data type for the whole DataFrame or individual columns:

  1. In [8]: data = ('a,b,c,d\n'
  2. ...: '1,2,3,4\n'
  3. ...: '5,6,7,8\n'
  4. ...: '9,10,11')
  5. ...:
  6. In [9]: print(data)
  7. a,b,c,d
  8. 1,2,3,4
  9. 5,6,7,8
  10. 9,10,11
  11. In [10]: df = pd.read_csv(StringIO(data), dtype=object)
  12. In [11]: df
  13. Out[11]:
  14. a b c d
  15. 0 1 2 3 4
  16. 1 5 6 7 8
  17. 2 9 10 11 NaN
  18. In [12]: df['a'][0]
  19. Out[12]: '1'
  20. In [13]: df = pd.read_csv(StringIO(data),
  21. ....: dtype={'b': object, 'c': np.float64, 'd': 'Int64'})
  22. ....:
  23. In [14]: df.dtypes
  24. Out[14]:
  25. a int64
  26. b object
  27. c float64
  28. d Int64
  29. dtype: object

Fortunately, pandas offers more than one way to ensure that your column(s) contain only one dtype. If you’re unfamiliar with these concepts, you can see here to learn more about dtypes, and here to learn more about object conversion in pandas.

For instance, you can use the converters argument of read_csv():

  1. In [15]: data = ("col_1\n"
  2. ....: "1\n"
  3. ....: "2\n"
  4. ....: "'A'\n"
  5. ....: "4.22")
  6. ....:
  7. In [16]: df = pd.read_csv(StringIO(data), converters={'col_1': str})
  8. In [17]: df
  9. Out[17]:
  10. col_1
  11. 0 1
  12. 1 2
  13. 2 'A'
  14. 3 4.22
  15. In [18]: df['col_1'].apply(type).value_counts()
  16. Out[18]:
  17. <class 'str'> 4
  18. Name: col_1, dtype: int64

Or you can use the to_numeric() function to coerce the dtypes after reading in the data,

  1. In [19]: df2 = pd.read_csv(StringIO(data))
  2. In [20]: df2['col_1'] = pd.to_numeric(df2['col_1'], errors='coerce')
  3. In [21]: df2
  4. Out[21]:
  5. col_1
  6. 0 1.00
  7. 1 2.00
  8. 2 NaN
  9. 3 4.22
  10. In [22]: df2['col_1'].apply(type).value_counts()
  11. Out[22]:
  12. <class 'float'> 4
  13. Name: col_1, dtype: int64

which will convert all valid parsing to floats, leaving the invalid parsing as NaN.

Ultimately, how you deal with reading in columns containing mixed dtypes depends on your specific needs. In the case above, if you wanted to NaN out the data anomalies, then to_numeric() is probably your best option. However, if you wanted for all the data to be coerced, no matter the type, then using the converters argument of read_csv() would certainly be worth trying.

New in version 0.20.0: support for the Python parser.

The dtype option is supported by the ‘python’ engine.

::: tip Note

In some cases, reading in abnormal data with columns containing mixed dtypes will result in an inconsistent dataset. If you rely on pandas to infer the dtypes of your columns, the parsing engine will go and infer the dtypes for different chunks of the data, rather than the whole dataset at once. Consequently, you can end up with column(s) with mixed dtypes. For example,

  1. In [23]: col_1 = list(range(500000)) + ['a', 'b'] + list(range(500000))
  2. In [24]: df = pd.DataFrame({'col_1': col_1})
  3. In [25]: df.to_csv('foo.csv')
  4. In [26]: mixed_df = pd.read_csv('foo.csv')
  5. In [27]: mixed_df['col_1'].apply(type).value_counts()
  6. Out[27]:
  7. <class 'int'> 737858
  8. <class 'str'> 262144
  9. Name: col_1, dtype: int64
  10. In [28]: mixed_df['col_1'].dtype
  11. Out[28]: dtype('O')

will result with mixed_df containing an int dtype for certain chunks of the column, and str for others due to the mixed dtypes from the data that was read in. It is important to note that the overall column will be marked with a dtype of object, which is used for columns with mixed dtypes.

:::

Specifying categorical dtype

New in version 0.19.0.

Categorical columns can be parsed directly by specifying dtype='category' or dtype=CategoricalDtype(categories, ordered).

  1. In [29]: data = ('col1,col2,col3\n'
  2. ....: 'a,b,1\n'
  3. ....: 'a,b,2\n'
  4. ....: 'c,d,3')
  5. ....:
  6. In [30]: pd.read_csv(StringIO(data))
  7. Out[30]:
  8. col1 col2 col3
  9. 0 a b 1
  10. 1 a b 2
  11. 2 c d 3
  12. In [31]: pd.read_csv(StringIO(data)).dtypes
  13. Out[31]:
  14. col1 object
  15. col2 object
  16. col3 int64
  17. dtype: object
  18. In [32]: pd.read_csv(StringIO(data), dtype='category').dtypes
  19. Out[32]:
  20. col1 category
  21. col2 category
  22. col3 category
  23. dtype: object

Individual columns can be parsed as a Categorical using a dict specification:

  1. In [33]: pd.read_csv(StringIO(data), dtype={'col1': 'category'}).dtypes
  2. Out[33]:
  3. col1 category
  4. col2 object
  5. col3 int64
  6. dtype: object

New in version 0.21.0.

Specifying dtype='category' will result in an unordered Categorical whose categories are the unique values observed in the data. For more control on the categories and order, create a CategoricalDtype ahead of time, and pass that for that column’s dtype.

  1. In [34]: from pandas.api.types import CategoricalDtype
  2. In [35]: dtype = CategoricalDtype(['d', 'c', 'b', 'a'], ordered=True)
  3. In [36]: pd.read_csv(StringIO(data), dtype={'col1': dtype}).dtypes
  4. Out[36]:
  5. col1 category
  6. col2 object
  7. col3 int64
  8. dtype: object

When using dtype=CategoricalDtype, “unexpected” values outside of dtype.categories are treated as missing values.

  1. In [37]: dtype = CategoricalDtype(['a', 'b', 'd']) # No 'c'
  2. In [38]: pd.read_csv(StringIO(data), dtype={'col1': dtype}).col1
  3. Out[38]:
  4. 0 a
  5. 1 a
  6. 2 NaN
  7. Name: col1, dtype: category
  8. Categories (3, object): [a, b, d]

This matches the behavior of Categorical.set_categories().

::: tip Note

With dtype='category', the resulting categories will always be parsed as strings (object dtype). If the categories are numeric they can be converted using the to_numeric() function, or as appropriate, another converter such as to_datetime().

When dtype is a CategoricalDtype with homogeneous categories ( all numeric, all datetimes, etc.), the conversion is done automatically.

  1. In [39]: df = pd.read_csv(StringIO(data), dtype='category')
  2. In [40]: df.dtypes
  3. Out[40]:
  4. col1 category
  5. col2 category
  6. col3 category
  7. dtype: object
  8. In [41]: df['col3']
  9. Out[41]:
  10. 0 1
  11. 1 2
  12. 2 3
  13. Name: col3, dtype: category
  14. Categories (3, object): [1, 2, 3]
  15. In [42]: df['col3'].cat.categories = pd.to_numeric(df['col3'].cat.categories)
  16. In [43]: df['col3']
  17. Out[43]:
  18. 0 1
  19. 1 2
  20. 2 3
  21. Name: col3, dtype: category
  22. Categories (3, int64): [1, 2, 3]

:::

Naming and using columns

Handling column names

A file may or may not have a header row. pandas assumes the first row should be used as the column names:

  1. In [44]: data = ('a,b,c\n'
  2. ....: '1,2,3\n'
  3. ....: '4,5,6\n'
  4. ....: '7,8,9')
  5. ....:
  6. In [45]: print(data)
  7. a,b,c
  8. 1,2,3
  9. 4,5,6
  10. 7,8,9
  11. In [46]: pd.read_csv(StringIO(data))
  12. Out[46]:
  13. a b c
  14. 0 1 2 3
  15. 1 4 5 6
  16. 2 7 8 9

By specifying the names argument in conjunction with header you can indicate other names to use and whether or not to throw away the header row (if any):

  1. In [47]: print(data)
  2. a,b,c
  3. 1,2,3
  4. 4,5,6
  5. 7,8,9
  6. In [48]: pd.read_csv(StringIO(data), names=['foo', 'bar', 'baz'], header=0)
  7. Out[48]:
  8. foo bar baz
  9. 0 1 2 3
  10. 1 4 5 6
  11. 2 7 8 9
  12. In [49]: pd.read_csv(StringIO(data), names=['foo', 'bar', 'baz'], header=None)
  13. Out[49]:
  14. foo bar baz
  15. 0 a b c
  16. 1 1 2 3
  17. 2 4 5 6
  18. 3 7 8 9

If the header is in a row other than the first, pass the row number to header. This will skip the preceding rows:

  1. In [50]: data = ('skip this skip it\n'
  2. ....: 'a,b,c\n'
  3. ....: '1,2,3\n'
  4. ....: '4,5,6\n'
  5. ....: '7,8,9')
  6. ....:
  7. In [51]: pd.read_csv(StringIO(data), header=1)
  8. Out[51]:
  9. a b c
  10. 0 1 2 3
  11. 1 4 5 6
  12. 2 7 8 9

::: tip Note

Default behavior is to infer the column names: if no names are passed the behavior is identical to header=0 and column names are inferred from the first non-blank line of the file, if column names are passed explicitly then the behavior is identical to header=None.

:::

Duplicate names parsing

If the file or header contains duplicate names, pandas will by default distinguish between them so as to prevent overwriting data:

  1. In [52]: data = ('a,b,a\n'
  2. ....: '0,1,2\n'
  3. ....: '3,4,5')
  4. ....:
  5. In [53]: pd.read_csv(StringIO(data))
  6. Out[53]:
  7. a b a.1
  8. 0 0 1 2
  9. 1 3 4 5

There is no more duplicate data because mangle_dupe_cols=True by default, which modifies a series of duplicate columns ‘X’, …, ‘X’ to become ‘X’, ‘X.1’, …, ‘X.N’. If mangle_dupe_cols=False, duplicate data can arise:

  1. In [2]: data = 'a,b,a\n0,1,2\n3,4,5'
  2. In [3]: pd.read_csv(StringIO(data), mangle_dupe_cols=False)
  3. Out[3]:
  4. a b a
  5. 0 2 1 2
  6. 1 5 4 5

To prevent users from encountering this problem with duplicate data, a ValueError exception is raised if mangle_dupe_cols != True:

  1. In [2]: data = 'a,b,a\n0,1,2\n3,4,5'
  2. In [3]: pd.read_csv(StringIO(data), mangle_dupe_cols=False)
  3. ...
  4. ValueError: Setting mangle_dupe_cols=False is not supported yet

Filtering columns (usecols)

The usecols argument allows you to select any subset of the columns in a file, either using the column names, position numbers or a callable:

New in version 0.20.0: support for callable usecols arguments

  1. In [54]: data = 'a,b,c,d\n1,2,3,foo\n4,5,6,bar\n7,8,9,baz'
  2. In [55]: pd.read_csv(StringIO(data))
  3. Out[55]:
  4. a b c d
  5. 0 1 2 3 foo
  6. 1 4 5 6 bar
  7. 2 7 8 9 baz
  8. In [56]: pd.read_csv(StringIO(data), usecols=['b', 'd'])
  9. Out[56]:
  10. b d
  11. 0 2 foo
  12. 1 5 bar
  13. 2 8 baz
  14. In [57]: pd.read_csv(StringIO(data), usecols=[0, 2, 3])
  15. Out[57]:
  16. a c d
  17. 0 1 3 foo
  18. 1 4 6 bar
  19. 2 7 9 baz
  20. In [58]: pd.read_csv(StringIO(data), usecols=lambda x: x.upper() in ['A', 'C'])
  21. Out[58]:
  22. a c
  23. 0 1 3
  24. 1 4 6
  25. 2 7 9

The usecols argument can also be used to specify which columns not to use in the final result:

  1. In [59]: pd.read_csv(StringIO(data), usecols=lambda x: x not in ['a', 'c'])
  2. Out[59]:
  3. b d
  4. 0 2 foo
  5. 1 5 bar
  6. 2 8 baz

In this case, the callable is specifying that we exclude the “a” and “c” columns from the output.

Comments and empty lines

Ignoring line comments and empty lines

If the comment parameter is specified, then completely commented lines will be ignored. By default, completely blank lines will be ignored as well.

  1. In [60]: data = ('\n'
  2. ....: 'a,b,c\n'
  3. ....: ' \n'
  4. ....: '# commented line\n'
  5. ....: '1,2,3\n'
  6. ....: '\n'
  7. ....: '4,5,6')
  8. ....:
  9. In [61]: print(data)
  10. a,b,c
  11. # commented line
  12. 1,2,3
  13. 4,5,6
  14. In [62]: pd.read_csv(StringIO(data), comment='#')
  15. Out[62]:
  16. a b c
  17. 0 1 2 3
  18. 1 4 5 6

If skip_blank_lines=False, then read_csv will not ignore blank lines:

  1. In [63]: data = ('a,b,c\n'
  2. ....: '\n'
  3. ....: '1,2,3\n'
  4. ....: '\n'
  5. ....: '\n'
  6. ....: '4,5,6')
  7. ....:
  8. In [64]: pd.read_csv(StringIO(data), skip_blank_lines=False)
  9. Out[64]:
  10. a b c
  11. 0 NaN NaN NaN
  12. 1 1.0 2.0 3.0
  13. 2 NaN NaN NaN
  14. 3 NaN NaN NaN
  15. 4 4.0 5.0 6.0

::: danger Warning

The presence of ignored lines might create ambiguities involving line numbers; the parameter header uses row numbers (ignoring commented/empty lines), while skiprows uses line numbers (including commented/empty lines):

  1. In [65]: data = ('#comment\n'
  2. ....: 'a,b,c\n'
  3. ....: 'A,B,C\n'
  4. ....: '1,2,3')
  5. ....:
  6. In [66]: pd.read_csv(StringIO(data), comment='#', header=1)
  7. Out[66]:
  8. A B C
  9. 0 1 2 3
  10. In [67]: data = ('A,B,C\n'
  11. ....: '#comment\n'
  12. ....: 'a,b,c\n'
  13. ....: '1,2,3')
  14. ....:
  15. In [68]: pd.read_csv(StringIO(data), comment='#', skiprows=2)
  16. Out[68]:
  17. a b c
  18. 0 1 2 3

If both header and skiprows are specified, header will be relative to the end of skiprows. For example:

:::

  1. In [69]: data = ('# empty\n'
  2. ....: '# second empty line\n'
  3. ....: '# third emptyline\n'
  4. ....: 'X,Y,Z\n'
  5. ....: '1,2,3\n'
  6. ....: 'A,B,C\n'
  7. ....: '1,2.,4.\n'
  8. ....: '5.,NaN,10.0\n')
  9. ....:
  10. In [70]: print(data)
  11. # empty
  12. # second empty line
  13. # third emptyline
  14. X,Y,Z
  15. 1,2,3
  16. A,B,C
  17. 1,2.,4.
  18. 5.,NaN,10.0
  19. In [71]: pd.read_csv(StringIO(data), comment='#', skiprows=4, header=1)
  20. Out[71]:
  21. A B C
  22. 0 1.0 2.0 4.0
  23. 1 5.0 NaN 10.0

Comments

Sometimes comments or meta data may be included in a file:

  1. In [72]: print(open('tmp.csv').read())
  2. ID,level,category
  3. Patient1,123000,x # really unpleasant
  4. Patient2,23000,y # wouldn't take his medicine
  5. Patient3,1234018,z # awesome

By default, the parser includes the comments in the output:

  1. In [73]: df = pd.read_csv('tmp.csv')
  2. In [74]: df
  3. Out[74]:
  4. ID level category
  5. 0 Patient1 123000 x # really unpleasant
  6. 1 Patient2 23000 y # wouldn't take his medicine
  7. 2 Patient3 1234018 z # awesome

We can suppress the comments using the comment keyword:

  1. In [75]: df = pd.read_csv('tmp.csv', comment='#')
  2. In [76]: df
  3. Out[76]:
  4. ID level category
  5. 0 Patient1 123000 x
  6. 1 Patient2 23000 y
  7. 2 Patient3 1234018 z

Dealing with Unicode data

The encoding argument should be used for encoded unicode data, which will result in byte strings being decoded to unicode in the result:

  1. In [77]: data = (b'word,length\n'
  2. ....: b'Tr\xc3\xa4umen,7\n'
  3. ....: b'Gr\xc3\xbc\xc3\x9fe,5')
  4. ....:
  5. In [78]: data = data.decode('utf8').encode('latin-1')
  6. In [79]: df = pd.read_csv(BytesIO(data), encoding='latin-1')
  7. In [80]: df
  8. Out[80]:
  9. word length
  10. 0 Träumen 7
  11. 1 Grüße 5
  12. In [81]: df['word'][1]
  13. Out[81]: 'Grüße'

Some formats which encode all characters as multiple bytes, like UTF-16, won’t parse correctly at all without specifying the encoding. Full list of Python standard encodings.

Index columns and trailing delimiters

If a file has one more column of data than the number of column names, the first column will be used as the DataFrame’s row names:

  1. In [82]: data = ('a,b,c\n'
  2. ....: '4,apple,bat,5.7\n'
  3. ....: '8,orange,cow,10')
  4. ....:
  5. In [83]: pd.read_csv(StringIO(data))
  6. Out[83]:
  7. a b c
  8. 4 apple bat 5.7
  9. 8 orange cow 10.0
  1. In [84]: data = ('index,a,b,c\n'
  2. ....: '4,apple,bat,5.7\n'
  3. ....: '8,orange,cow,10')
  4. ....:
  5. In [85]: pd.read_csv(StringIO(data), index_col=0)
  6. Out[85]:
  7. a b c
  8. index
  9. 4 apple bat 5.7
  10. 8 orange cow 10.0

Ordinarily, you can achieve this behavior using the index_col option.

There are some exception cases when a file has been prepared with delimiters at the end of each data line, confusing the parser. To explicitly disable the index column inference and discard the last column, pass index_col=False:

  1. In [86]: data = ('a,b,c\n'
  2. ....: '4,apple,bat,\n'
  3. ....: '8,orange,cow,')
  4. ....:
  5. In [87]: print(data)
  6. a,b,c
  7. 4,apple,bat,
  8. 8,orange,cow,
  9. In [88]: pd.read_csv(StringIO(data))
  10. Out[88]:
  11. a b c
  12. 4 apple bat NaN
  13. 8 orange cow NaN
  14. In [89]: pd.read_csv(StringIO(data), index_col=False)
  15. Out[89]:
  16. a b c
  17. 0 4 apple bat
  18. 1 8 orange cow

If a subset of data is being parsed using the usecols option, the index_col specification is based on that subset, not the original data.

  1. In [90]: data = ('a,b,c\n'
  2. ....: '4,apple,bat,\n'
  3. ....: '8,orange,cow,')
  4. ....:
  5. In [91]: print(data)
  6. a,b,c
  7. 4,apple,bat,
  8. 8,orange,cow,
  9. In [92]: pd.read_csv(StringIO(data), usecols=['b', 'c'])
  10. Out[92]:
  11. b c
  12. 4 bat NaN
  13. 8 cow NaN
  14. In [93]: pd.read_csv(StringIO(data), usecols=['b', 'c'], index_col=0)
  15. Out[93]:
  16. b c
  17. 4 bat NaN
  18. 8 cow NaN

Date Handling

Specifying date columns

To better facilitate working with datetime data, read_csv() uses the keyword arguments parse_dates and date_parser to allow users to specify a variety of columns and date/time formats to turn the input text data into datetime objects.

The simplest case is to just pass in parse_dates=True:

  1. # Use a column as an index, and parse it as dates.
  2. In [94]: df = pd.read_csv('foo.csv', index_col=0, parse_dates=True)
  3. In [95]: df
  4. Out[95]:
  5. A B C
  6. date
  7. 2009-01-01 a 1 2
  8. 2009-01-02 b 3 4
  9. 2009-01-03 c 4 5
  10. # These are Python datetime objects
  11. In [96]: df.index
  12. Out[96]: DatetimeIndex(['2009-01-01', '2009-01-02', '2009-01-03'], dtype='datetime64[ns]', name='date', freq=None)

It is often the case that we may want to store date and time data separately, or store various date fields separately. the parse_dates keyword can be used to specify a combination of columns to parse the dates and/or times from.

You can specify a list of column lists to parse_dates, the resulting date columns will be prepended to the output (so as to not affect the existing column order) and the new column names will be the concatenation of the component column names:

  1. In [97]: print(open('tmp.csv').read())
  2. KORD,19990127, 19:00:00, 18:56:00, 0.8100
  3. KORD,19990127, 20:00:00, 19:56:00, 0.0100
  4. KORD,19990127, 21:00:00, 20:56:00, -0.5900
  5. KORD,19990127, 21:00:00, 21:18:00, -0.9900
  6. KORD,19990127, 22:00:00, 21:56:00, -0.5900
  7. KORD,19990127, 23:00:00, 22:56:00, -0.5900
  8. In [98]: df = pd.read_csv('tmp.csv', header=None, parse_dates=[[1, 2], [1, 3]])
  9. In [99]: df
  10. Out[99]:
  11. 1_2 1_3 0 4
  12. 0 1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 0.81
  13. 1 1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 0.01
  14. 2 1999-01-27 21:00:00 1999-01-27 20:56:00 KORD -0.59
  15. 3 1999-01-27 21:00:00 1999-01-27 21:18:00 KORD -0.99
  16. 4 1999-01-27 22:00:00 1999-01-27 21:56:00 KORD -0.59
  17. 5 1999-01-27 23:00:00 1999-01-27 22:56:00 KORD -0.59

By default the parser removes the component date columns, but you can choose to retain them via the keep_date_col keyword:

  1. In [100]: df = pd.read_csv('tmp.csv', header=None, parse_dates=[[1, 2], [1, 3]],
  2. .....: keep_date_col=True)
  3. .....:
  4. In [101]: df
  5. Out[101]:
  6. 1_2 1_3 0 1 2 3 4
  7. 0 1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 19990127 19:00:00 18:56:00 0.81
  8. 1 1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 19990127 20:00:00 19:56:00 0.01
  9. 2 1999-01-27 21:00:00 1999-01-27 20:56:00 KORD 19990127 21:00:00 20:56:00 -0.59
  10. 3 1999-01-27 21:00:00 1999-01-27 21:18:00 KORD 19990127 21:00:00 21:18:00 -0.99
  11. 4 1999-01-27 22:00:00 1999-01-27 21:56:00 KORD 19990127 22:00:00 21:56:00 -0.59
  12. 5 1999-01-27 23:00:00 1999-01-27 22:56:00 KORD 19990127 23:00:00 22:56:00 -0.59

Note that if you wish to combine multiple columns into a single date column, a nested list must be used. In other words, parse_dates=[1, 2] indicates that the second and third columns should each be parsed as separate date columns while parse_dates=[[1, 2]] means the two columns should be parsed into a single column.

You can also use a dict to specify custom name columns:

  1. In [102]: date_spec = {'nominal': [1, 2], 'actual': [1, 3]}
  2. In [103]: df = pd.read_csv('tmp.csv', header=None, parse_dates=date_spec)
  3. In [104]: df
  4. Out[104]:
  5. nominal actual 0 4
  6. 0 1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 0.81
  7. 1 1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 0.01
  8. 2 1999-01-27 21:00:00 1999-01-27 20:56:00 KORD -0.59
  9. 3 1999-01-27 21:00:00 1999-01-27 21:18:00 KORD -0.99
  10. 4 1999-01-27 22:00:00 1999-01-27 21:56:00 KORD -0.59
  11. 5 1999-01-27 23:00:00 1999-01-27 22:56:00 KORD -0.59

It is important to remember that if multiple text columns are to be parsed into a single date column, then a new column is prepended to the data. The index_col specification is based off of this new set of columns rather than the original data columns:

  1. In [105]: date_spec = {'nominal': [1, 2], 'actual': [1, 3]}
  2. In [106]: df = pd.read_csv('tmp.csv', header=None, parse_dates=date_spec,
  3. .....: index_col=0) # index is the nominal column
  4. .....:
  5. In [107]: df
  6. Out[107]:
  7. actual 0 4
  8. nominal
  9. 1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 0.81
  10. 1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 0.01
  11. 1999-01-27 21:00:00 1999-01-27 20:56:00 KORD -0.59
  12. 1999-01-27 21:00:00 1999-01-27 21:18:00 KORD -0.99
  13. 1999-01-27 22:00:00 1999-01-27 21:56:00 KORD -0.59
  14. 1999-01-27 23:00:00 1999-01-27 22:56:00 KORD -0.59

::: tip Note

If a column or index contains an unparsable date, the entire column or index will be returned unaltered as an object data type. For non-standard datetime parsing, use to_datetime() after pd.read_csv.

:::

::: tip Note

read_csv has a fast_path for parsing datetime strings in iso8601 format, e.g “2000-01-01T00:01:02+00:00” and similar variations. If you can arrange for your data to store datetimes in this format, load times will be significantly faster, ~20x has been observed.

:::

::: tip Note

When passing a dict as the parse_dates argument, the order of the columns prepended is not guaranteed, because dict objects do not impose an ordering on their keys. On Python 2.7+ you may use collections.OrderedDict instead of a regular dict if this matters to you. Because of this, when using a dict for ‘parse_dates’ in conjunction with the index_col argument, it’s best to specify index_col as a column label rather then as an index on the resulting frame.

:::

Date parsing functions

Finally, the parser allows you to specify a custom date_parser function to take full advantage of the flexibility of the date parsing API:

  1. In [108]: df = pd.read_csv('tmp.csv', header=None, parse_dates=date_spec,
  2. .....: date_parser=pd.io.date_converters.parse_date_time)
  3. .....:
  4. In [109]: df
  5. Out[109]:
  6. nominal actual 0 4
  7. 0 1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 0.81
  8. 1 1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 0.01
  9. 2 1999-01-27 21:00:00 1999-01-27 20:56:00 KORD -0.59
  10. 3 1999-01-27 21:00:00 1999-01-27 21:18:00 KORD -0.99
  11. 4 1999-01-27 22:00:00 1999-01-27 21:56:00 KORD -0.59
  12. 5 1999-01-27 23:00:00 1999-01-27 22:56:00 KORD -0.59

Pandas will try to call the date_parser function in three different ways. If an exception is raised, the next one is tried:

  1. date_parser is first called with one or more arrays as arguments, as defined using parse_dates (e.g., date_parser(['2013', '2013'], ['1', '2'])).
  2. If #1 fails, date_parser is called with all the columns concatenated row-wise into a single array (e.g., date_parser(['2013 1', '2013 2'])).
  3. If #2 fails, date_parser is called once for every row with one or more string arguments from the columns indicated with parse_dates (e.g., date_parser('2013', '1') for the first row, date_parser('2013', '2') for the second, etc.).

Note that performance-wise, you should try these methods of parsing dates in order:

  1. Try to infer the format using infer_datetime_format=True (see section below).
  2. If you know the format, use pd.to_datetime(): date_parser=lambda x: pd.to_datetime(x, format=...).
  3. If you have a really non-standard format, use a custom date_parser function. For optimal performance, this should be vectorized, i.e., it should accept arrays as arguments.

You can explore the date parsing functionality in date_converters.py and add your own. We would love to turn this module into a community supported set of date/time parsers. To get you started, date_converters.py contains functions to parse dual date and time columns, year/month/day columns, and year/month/day/hour/minute/second columns. It also contains a generic_parser function so you can curry it with a function that deals with a single date rather than the entire array.

Parsing a CSV with mixed timezones

Pandas cannot natively represent a column or index with mixed timezones. If your CSV file contains columns with a mixture of timezones, the default result will be an object-dtype column with strings, even with parse_dates.

  1. In [110]: content = """\
  2. .....: a
  3. .....: 2000-01-01T00:00:00+05:00
  4. .....: 2000-01-01T00:00:00+06:00"""
  5. .....:
  6. In [111]: df = pd.read_csv(StringIO(content), parse_dates=['a'])
  7. In [112]: df['a']
  8. Out[112]:
  9. 0 2000-01-01 00:00:00+05:00
  10. 1 2000-01-01 00:00:00+06:00
  11. Name: a, dtype: object

To parse the mixed-timezone values as a datetime column, pass a partially-applied to_datetime() with utc=True as the date_parser.

  1. In [113]: df = pd.read_csv(StringIO(content), parse_dates=['a'],
  2. .....: date_parser=lambda col: pd.to_datetime(col, utc=True))
  3. .....:
  4. In [114]: df['a']
  5. Out[114]:
  6. 0 1999-12-31 19:00:00+00:00
  7. 1 1999-12-31 18:00:00+00:00
  8. Name: a, dtype: datetime64[ns, UTC]

Inferring datetime format

If you have parse_dates enabled for some or all of your columns, and your datetime strings are all formatted the same way, you may get a large speed up by setting infer_datetime_format=True. If set, pandas will attempt to guess the format of your datetime strings, and then use a faster means of parsing the strings. 5-10x parsing speeds have been observed. pandas will fallback to the usual parsing if either the format cannot be guessed or the format that was guessed cannot properly parse the entire column of strings. So in general, infer_datetime_format should not have any negative consequences if enabled.

Here are some examples of datetime strings that can be guessed (All representing December 30th, 2011 at 00:00:00):

  • “20111230”
  • “2011/12/30”
  • “20111230 00:00:00”
  • “12/30/2011 00:00:00”
  • “30/Dec/2011 00:00:00”
  • “30/December/2011 00:00:00”

Note that infer_datetime_format is sensitive to dayfirst. With dayfirst=True, it will guess “01/12/2011” to be December 1st. With dayfirst=False (default) it will guess “01/12/2011” to be January 12th.

  1. # Try to infer the format for the index column
  2. In [115]: df = pd.read_csv('foo.csv', index_col=0, parse_dates=True,
  3. .....: infer_datetime_format=True)
  4. .....:
  5. In [116]: df
  6. Out[116]:
  7. A B C
  8. date
  9. 2009-01-01 a 1 2
  10. 2009-01-02 b 3 4
  11. 2009-01-03 c 4 5

International date formats

While US date formats tend to be MM/DD/YYYY, many international formats use DD/MM/YYYY instead. For convenience, a dayfirst keyword is provided:

  1. In [117]: print(open('tmp.csv').read())
  2. date,value,cat
  3. 1/6/2000,5,a
  4. 2/6/2000,10,b
  5. 3/6/2000,15,c
  6. In [118]: pd.read_csv('tmp.csv', parse_dates=[0])
  7. Out[118]:
  8. date value cat
  9. 0 2000-01-06 5 a
  10. 1 2000-02-06 10 b
  11. 2 2000-03-06 15 c
  12. In [119]: pd.read_csv('tmp.csv', dayfirst=True, parse_dates=[0])
  13. Out[119]:
  14. date value cat
  15. 0 2000-06-01 5 a
  16. 1 2000-06-02 10 b
  17. 2 2000-06-03 15 c

Specifying method for floating-point conversion

The parameter float_precision can be specified in order to use a specific floating-point converter during parsing with the C engine. The options are the ordinary converter, the high-precision converter, and the round-trip converter (which is guaranteed to round-trip values after writing to a file). For example:

  1. In [120]: val = '0.3066101993807095471566981359501369297504425048828125'
  2. In [121]: data = 'a,b,c\n1,2,{0}'.format(val)
  3. In [122]: abs(pd.read_csv(StringIO(data), engine='c',
  4. .....: float_precision=None)['c'][0] - float(val))
  5. .....:
  6. Out[122]: 1.1102230246251565e-16
  7. In [123]: abs(pd.read_csv(StringIO(data), engine='c',
  8. .....: float_precision='high')['c'][0] - float(val))
  9. .....:
  10. Out[123]: 5.551115123125783e-17
  11. In [124]: abs(pd.read_csv(StringIO(data), engine='c',
  12. .....: float_precision='round_trip')['c'][0] - float(val))
  13. .....:
  14. Out[124]: 0.0

Thousand separators

For large numbers that have been written with a thousands separator, you can set the thousands keyword to a string of length 1 so that integers will be parsed correctly:

By default, numbers with a thousands separator will be parsed as strings:

  1. In [125]: print(open('tmp.csv').read())
  2. ID|level|category
  3. Patient1|123,000|x
  4. Patient2|23,000|y
  5. Patient3|1,234,018|z
  6. In [126]: df = pd.read_csv('tmp.csv', sep='|')
  7. In [127]: df
  8. Out[127]:
  9. ID level category
  10. 0 Patient1 123,000 x
  11. 1 Patient2 23,000 y
  12. 2 Patient3 1,234,018 z
  13. In [128]: df.level.dtype
  14. Out[128]: dtype('O')

The thousands keyword allows integers to be parsed correctly:

  1. In [129]: print(open('tmp.csv').read())
  2. ID|level|category
  3. Patient1|123,000|x
  4. Patient2|23,000|y
  5. Patient3|1,234,018|z
  6. In [130]: df = pd.read_csv('tmp.csv', sep='|', thousands=',')
  7. In [131]: df
  8. Out[131]:
  9. ID level category
  10. 0 Patient1 123000 x
  11. 1 Patient2 23000 y
  12. 2 Patient3 1234018 z
  13. In [132]: df.level.dtype
  14. Out[132]: dtype('int64')

NA values

To control which values are parsed as missing values (which are signified by NaN), specify a string in na_values. If you specify a list of strings, then all values in it are considered to be missing values. If you specify a number (a float, like 5.0 or an integer like 5), the corresponding equivalent values will also imply a missing value (in this case effectively [5.0, 5] are recognized as NaN).

To completely override the default values that are recognized as missing, specify keep_default_na=False.

The default NaN recognized values are ['-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN', '#N/A N/A', '#N/A', 'N/A', 'n/a', 'NA', '#NA', 'NULL', 'null', 'NaN', '-NaN', 'nan', '-nan', ''].

Let us consider some examples:

  1. pd.read_csv('path_to_file.csv', na_values=[5])

In the example above 5 and 5.0 will be recognized as NaN, in addition to the defaults. A string will first be interpreted as a numerical 5, then as a NaN.

  1. pd.read_csv('path_to_file.csv', keep_default_na=False, na_values=[""])

Above, only an empty field will be recognized as NaN.

  1. pd.read_csv('path_to_file.csv', keep_default_na=False, na_values=["NA", "0"])

Above, both NA and 0 as strings are NaN.

  1. pd.read_csv('path_to_file.csv', na_values=["Nope"])

The default values, in addition to the string "Nope" are recognized as NaN.

Infinity

inf like values will be parsed as np.inf (positive infinity), and -inf as -np.inf (negative infinity). These will ignore the case of the value, meaning Inf, will also be parsed as np.inf.

Returning Series

Using the squeeze keyword, the parser will return output with a single column as a Series:

  1. In [133]: print(open('tmp.csv').read())
  2. level
  3. Patient1,123000
  4. Patient2,23000
  5. Patient3,1234018
  6. In [134]: output = pd.read_csv('tmp.csv', squeeze=True)
  7. In [135]: output
  8. Out[135]:
  9. Patient1 123000
  10. Patient2 23000
  11. Patient3 1234018
  12. Name: level, dtype: int64
  13. In [136]: type(output)
  14. Out[136]: pandas.core.series.Series

Boolean values

The common values True, False, TRUE, and FALSE are all recognized as boolean. Occasionally you might want to recognize other values as being boolean. To do this, use the true_values and false_values options as follows:

  1. In [137]: data = ('a,b,c\n'
  2. .....: '1,Yes,2\n'
  3. .....: '3,No,4')
  4. .....:
  5. In [138]: print(data)
  6. a,b,c
  7. 1,Yes,2
  8. 3,No,4
  9. In [139]: pd.read_csv(StringIO(data))
  10. Out[139]:
  11. a b c
  12. 0 1 Yes 2
  13. 1 3 No 4
  14. In [140]: pd.read_csv(StringIO(data), true_values=['Yes'], false_values=['No'])
  15. Out[140]:
  16. a b c
  17. 0 1 True 2
  18. 1 3 False 4

Handling “bad” lines

Some files may have malformed lines with too few fields or too many. Lines with too few fields will have NA values filled in the trailing fields. Lines with too many fields will raise an error by default:

  1. In [141]: data = ('a,b,c\n'
  2. .....: '1,2,3\n'
  3. .....: '4,5,6,7\n'
  4. .....: '8,9,10')
  5. .....:
  6. In [142]: pd.read_csv(StringIO(data))
  7. ---------------------------------------------------------------------------
  8. ParserError Traceback (most recent call last)
  9. <ipython-input-142-6388c394e6b8> in <module>
  10. ----> 1 pd.read_csv(StringIO(data))
  11. /pandas/pandas/io/parsers.py in parser_f(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, dialect, error_bad_lines, warn_bad_lines, delim_whitespace, low_memory, memory_map, float_precision)
  12. 683 )
  13. 684
  14. --> 685 return _read(filepath_or_buffer, kwds)
  15. 686
  16. 687 parser_f.__name__ = name
  17. /pandas/pandas/io/parsers.py in _read(filepath_or_buffer, kwds)
  18. 461
  19. 462 try:
  20. --> 463 data = parser.read(nrows)
  21. 464 finally:
  22. 465 parser.close()
  23. /pandas/pandas/io/parsers.py in read(self, nrows)
  24. 1152 def read(self, nrows=None):
  25. 1153 nrows = _validate_integer("nrows", nrows)
  26. -> 1154 ret = self._engine.read(nrows)
  27. 1155
  28. 1156 # May alter columns / col_dict
  29. /pandas/pandas/io/parsers.py in read(self, nrows)
  30. 2046 def read(self, nrows=None):
  31. 2047 try:
  32. -> 2048 data = self._reader.read(nrows)
  33. 2049 except StopIteration:
  34. 2050 if self._first_chunk:
  35. /pandas/pandas/_libs/parsers.pyx in pandas._libs.parsers.TextReader.read()
  36. /pandas/pandas/_libs/parsers.pyx in pandas._libs.parsers.TextReader._read_low_memory()
  37. /pandas/pandas/_libs/parsers.pyx in pandas._libs.parsers.TextReader._read_rows()
  38. /pandas/pandas/_libs/parsers.pyx in pandas._libs.parsers.TextReader._tokenize_rows()
  39. /pandas/pandas/_libs/parsers.pyx in pandas._libs.parsers.raise_parser_error()
  40. ParserError: Error tokenizing data. C error: Expected 3 fields in line 3, saw 4

You can elect to skip bad lines:

  1. In [29]: pd.read_csv(StringIO(data), error_bad_lines=False)
  2. Skipping line 3: expected 3 fields, saw 4
  3. Out[29]:
  4. a b c
  5. 0 1 2 3
  6. 1 8 9 10

You can also use the usecols parameter to eliminate extraneous column data that appear in some lines but not others:

  1. In [30]: pd.read_csv(StringIO(data), usecols=[0, 1, 2])
  2. Out[30]:
  3. a b c
  4. 0 1 2 3
  5. 1 4 5 6
  6. 2 8 9 10

Dialect

The dialect keyword gives greater flexibility in specifying the file format. By default it uses the Excel dialect but you can specify either the dialect name or a csv.Dialect instance.

Suppose you had data with unenclosed quotes:

  1. In [143]: print(data)
  2. label1,label2,label3
  3. index1,"a,c,e
  4. index2,b,d,f

By default, read_csv uses the Excel dialect and treats the double quote as the quote character, which causes it to fail when it finds a newline before it finds the closing double quote.

We can get around this using dialect:

  1. In [144]: import csv
  2. In [145]: dia = csv.excel()
  3. In [146]: dia.quoting = csv.QUOTE_NONE
  4. In [147]: pd.read_csv(StringIO(data), dialect=dia)
  5. Out[147]:
  6. label1 label2 label3
  7. index1 "a c e
  8. index2 b d f

All of the dialect options can be specified separately by keyword arguments:

  1. In [148]: data = 'a,b,c~1,2,3~4,5,6'
  2. In [149]: pd.read_csv(StringIO(data), lineterminator='~')
  3. Out[149]:
  4. a b c
  5. 0 1 2 3
  6. 1 4 5 6

Another common dialect option is skipinitialspace, to skip any whitespace after a delimiter:

  1. In [150]: data = 'a, b, c\n1, 2, 3\n4, 5, 6'
  2. In [151]: print(data)
  3. a, b, c
  4. 1, 2, 3
  5. 4, 5, 6
  6. In [152]: pd.read_csv(StringIO(data), skipinitialspace=True)
  7. Out[152]:
  8. a b c
  9. 0 1 2 3
  10. 1 4 5 6

The parsers make every attempt to “do the right thing” and not be fragile. Type inference is a pretty big deal. If a column can be coerced to integer dtype without altering the contents, the parser will do so. Any non-numeric columns will come through as object dtype as with the rest of pandas objects.

Quoting and Escape Characters

Quotes (and other escape characters) in embedded fields can be handled in any number of ways. One way is to use backslashes; to properly parse this data, you should pass the escapechar option:

  1. In [153]: data = 'a,b\n"hello, \\"Bob\\", nice to see you",5'
  2. In [154]: print(data)
  3. a,b
  4. "hello, \"Bob\", nice to see you",5
  5. In [155]: pd.read_csv(StringIO(data), escapechar='\\')
  6. Out[155]:
  7. a b
  8. 0 hello, "Bob", nice to see you 5

Files with fixed width columns

While read_csv() reads delimited data, the read_fwf() function works with data files that have known and fixed column widths. The function parameters to read_fwf are largely the same as read_csv with two extra parameters, and a different usage of the delimiter parameter:

  • colspecs: A list of pairs (tuples) giving the extents of the fixed-width fields of each line as half-open intervals (i.e., [from, to[ ). String value ‘infer’ can be used to instruct the parser to try detecting the column specifications from the first 100 rows of the data. Default behavior, if not specified, is to infer.
  • widths: A list of field widths which can be used instead of ‘colspecs’ if the intervals are contiguous.
  • delimiter: Characters to consider as filler characters in the fixed-width file. Can be used to specify the filler character of the fields if it is not spaces (e.g., ‘~’).

Consider a typical fixed-width data file:

  1. In [156]: print(open('bar.csv').read())
  2. id8141 360.242940 149.910199 11950.7
  3. id1594 444.953632 166.985655 11788.4
  4. id1849 364.136849 183.628767 11806.2
  5. id1230 413.836124 184.375703 11916.8
  6. id1948 502.953953 173.237159 12468.3

In order to parse this file into a DataFrame, we simply need to supply the column specifications to the read_fwf function along with the file name:

  1. # Column specifications are a list of half-intervals
  2. In [157]: colspecs = [(0, 6), (8, 20), (21, 33), (34, 43)]
  3. In [158]: df = pd.read_fwf('bar.csv', colspecs=colspecs, header=None, index_col=0)
  4. In [159]: df
  5. Out[159]:
  6. 1 2 3
  7. 0
  8. id8141 360.242940 149.910199 11950.7
  9. id1594 444.953632 166.985655 11788.4
  10. id1849 364.136849 183.628767 11806.2
  11. id1230 413.836124 184.375703 11916.8
  12. id1948 502.953953 173.237159 12468.3

Note how the parser automatically picks column names X.<column number> when header=None argument is specified. Alternatively, you can supply just the column widths for contiguous columns:

  1. # Widths are a list of integers
  2. In [160]: widths = [6, 14, 13, 10]
  3. In [161]: df = pd.read_fwf('bar.csv', widths=widths, header=None)
  4. In [162]: df
  5. Out[162]:
  6. 0 1 2 3
  7. 0 id8141 360.242940 149.910199 11950.7
  8. 1 id1594 444.953632 166.985655 11788.4
  9. 2 id1849 364.136849 183.628767 11806.2
  10. 3 id1230 413.836124 184.375703 11916.8
  11. 4 id1948 502.953953 173.237159 12468.3

The parser will take care of extra white spaces around the columns so it’s ok to have extra separation between the columns in the file.

By default, read_fwf will try to infer the file’s colspecs by using the first 100 rows of the file. It can do it only in cases when the columns are aligned and correctly separated by the provided delimiter (default delimiter is whitespace).

  1. In [163]: df = pd.read_fwf('bar.csv', header=None, index_col=0)
  2. In [164]: df
  3. Out[164]:
  4. 1 2 3
  5. 0
  6. id8141 360.242940 149.910199 11950.7
  7. id1594 444.953632 166.985655 11788.4
  8. id1849 364.136849 183.628767 11806.2
  9. id1230 413.836124 184.375703 11916.8
  10. id1948 502.953953 173.237159 12468.3

New in version 0.20.0.

read_fwf supports the dtype parameter for specifying the types of parsed columns to be different from the inferred type.

  1. In [165]: pd.read_fwf('bar.csv', header=None, index_col=0).dtypes
  2. Out[165]:
  3. 1 float64
  4. 2 float64
  5. 3 float64
  6. dtype: object
  7. In [166]: pd.read_fwf('bar.csv', header=None, dtype={2: 'object'}).dtypes
  8. Out[166]:
  9. 0 object
  10. 1 float64
  11. 2 object
  12. 3 float64
  13. dtype: object

Indexes

Files with an “implicit” index column

Consider a file with one less entry in the header than the number of data column:

  1. In [167]: print(open('foo.csv').read())
  2. A,B,C
  3. 20090101,a,1,2
  4. 20090102,b,3,4
  5. 20090103,c,4,5

In this special case, read_csv assumes that the first column is to be used as the index of the DataFrame:

  1. In [168]: pd.read_csv('foo.csv')
  2. Out[168]:
  3. A B C
  4. 20090101 a 1 2
  5. 20090102 b 3 4
  6. 20090103 c 4 5

Note that the dates weren’t automatically parsed. In that case you would need to do as before:

  1. In [169]: df = pd.read_csv('foo.csv', parse_dates=True)
  2. In [170]: df.index
  3. Out[170]: DatetimeIndex(['2009-01-01', '2009-01-02', '2009-01-03'], dtype='datetime64[ns]', freq=None)

Reading an index with a MultiIndex

Suppose you have data indexed by two columns:

  1. In [171]: print(open('data/mindex_ex.csv').read())
  2. year,indiv,zit,xit
  3. 1977,"A",1.2,.6
  4. 1977,"B",1.5,.5
  5. 1977,"C",1.7,.8
  6. 1978,"A",.2,.06
  7. 1978,"B",.7,.2
  8. 1978,"C",.8,.3
  9. 1978,"D",.9,.5
  10. 1978,"E",1.4,.9
  11. 1979,"C",.2,.15
  12. 1979,"D",.14,.05
  13. 1979,"E",.5,.15
  14. 1979,"F",1.2,.5
  15. 1979,"G",3.4,1.9
  16. 1979,"H",5.4,2.7
  17. 1979,"I",6.4,1.2

The index_col argument to read_csv can take a list of column numbers to turn multiple columns into a MultiIndex for the index of the returned object:

  1. In [172]: df = pd.read_csv("data/mindex_ex.csv", index_col=[0, 1])
  2. In [173]: df
  3. Out[173]:
  4. zit xit
  5. year indiv
  6. 1977 A 1.20 0.60
  7. B 1.50 0.50
  8. C 1.70 0.80
  9. 1978 A 0.20 0.06
  10. B 0.70 0.20
  11. C 0.80 0.30
  12. D 0.90 0.50
  13. E 1.40 0.90
  14. 1979 C 0.20 0.15
  15. D 0.14 0.05
  16. E 0.50 0.15
  17. F 1.20 0.50
  18. G 3.40 1.90
  19. H 5.40 2.70
  20. I 6.40 1.20
  21. In [174]: df.loc[1978]
  22. Out[174]:
  23. zit xit
  24. indiv
  25. A 0.2 0.06
  26. B 0.7 0.20
  27. C 0.8 0.30
  28. D 0.9 0.50
  29. E 1.4 0.90

Reading columns with a MultiIndex

By specifying list of row locations for the header argument, you can read in a MultiIndex for the columns. Specifying non-consecutive rows will skip the intervening rows.

  1. In [175]: from pandas.util.testing import makeCustomDataframe as mkdf
  2. In [176]: df = mkdf(5, 3, r_idx_nlevels=2, c_idx_nlevels=4)
  3. In [177]: df.to_csv('mi.csv')
  4. In [178]: print(open('mi.csv').read())
  5. C0,,C_l0_g0,C_l0_g1,C_l0_g2
  6. C1,,C_l1_g0,C_l1_g1,C_l1_g2
  7. C2,,C_l2_g0,C_l2_g1,C_l2_g2
  8. C3,,C_l3_g0,C_l3_g1,C_l3_g2
  9. R0,R1,,,
  10. R_l0_g0,R_l1_g0,R0C0,R0C1,R0C2
  11. R_l0_g1,R_l1_g1,R1C0,R1C1,R1C2
  12. R_l0_g2,R_l1_g2,R2C0,R2C1,R2C2
  13. R_l0_g3,R_l1_g3,R3C0,R3C1,R3C2
  14. R_l0_g4,R_l1_g4,R4C0,R4C1,R4C2
  15. In [179]: pd.read_csv('mi.csv', header=[0, 1, 2, 3], index_col=[0, 1])
  16. Out[179]:
  17. C0 C_l0_g0 C_l0_g1 C_l0_g2
  18. C1 C_l1_g0 C_l1_g1 C_l1_g2
  19. C2 C_l2_g0 C_l2_g1 C_l2_g2
  20. C3 C_l3_g0 C_l3_g1 C_l3_g2
  21. R0 R1
  22. R_l0_g0 R_l1_g0 R0C0 R0C1 R0C2
  23. R_l0_g1 R_l1_g1 R1C0 R1C1 R1C2
  24. R_l0_g2 R_l1_g2 R2C0 R2C1 R2C2
  25. R_l0_g3 R_l1_g3 R3C0 R3C1 R3C2
  26. R_l0_g4 R_l1_g4 R4C0 R4C1 R4C2

read_csv is also able to interpret a more common format of multi-columns indices.

  1. In [180]: print(open('mi2.csv').read())
  2. ,a,a,a,b,c,c
  3. ,q,r,s,t,u,v
  4. one,1,2,3,4,5,6
  5. two,7,8,9,10,11,12
  6. In [181]: pd.read_csv('mi2.csv', header=[0, 1], index_col=0)
  7. Out[181]:
  8. a b c
  9. q r s t u v
  10. one 1 2 3 4 5 6
  11. two 7 8 9 10 11 12

Note: If an index_col is not specified (e.g. you don’t have an index, or wrote it with df.to_csv(..., index=False), then any names on the columns index will be lost.

Automatically “sniffing” the delimiter

read_csv is capable of inferring delimited (not necessarily comma-separated) files, as pandas uses the csv.Sniffer class of the csv module. For this, you have to specify sep=None.

  1. In [182]: print(open('tmp2.sv').read())
  2. :0:1:2:3
  3. 0:0.4691122999071863:-0.2828633443286633:-1.5090585031735124:-1.1356323710171934
  4. 1:1.2121120250208506:-0.17321464905330858:0.11920871129693428:-1.0442359662799567
  5. 2:-0.8618489633477999:-2.1045692188948086:-0.4949292740687813:1.071803807037338
  6. 3:0.7215551622443669:-0.7067711336300845:-1.0395749851146963:0.27185988554282986
  7. 4:-0.42497232978883753:0.567020349793672:0.27623201927771873:-1.0874006912859915
  8. 5:-0.6736897080883706:0.1136484096888855:-1.4784265524372235:0.5249876671147047
  9. 6:0.4047052186802365:0.5770459859204836:-1.7150020161146375:-1.0392684835147725
  10. 7:-0.3706468582364464:-1.1578922506419993:-1.344311812731667:0.8448851414248841
  11. 8:1.0757697837155533:-0.10904997528022223:1.6435630703622064:-1.4693879595399115
  12. 9:0.35702056413309086:-0.6746001037299882:-1.776903716971867:-0.9689138124473498
  13. In [183]: pd.read_csv('tmp2.sv', sep=None, engine='python')
  14. Out[183]:
  15. Unnamed: 0 0 1 2 3
  16. 0 0 0.469112 -0.282863 -1.509059 -1.135632
  17. 1 1 1.212112 -0.173215 0.119209 -1.044236
  18. 2 2 -0.861849 -2.104569 -0.494929 1.071804
  19. 3 3 0.721555 -0.706771 -1.039575 0.271860
  20. 4 4 -0.424972 0.567020 0.276232 -1.087401
  21. 5 5 -0.673690 0.113648 -1.478427 0.524988
  22. 6 6 0.404705 0.577046 -1.715002 -1.039268
  23. 7 7 -0.370647 -1.157892 -1.344312 0.844885
  24. 8 8 1.075770 -0.109050 1.643563 -1.469388
  25. 9 9 0.357021 -0.674600 -1.776904 -0.968914

Reading multiple files to create a single DataFrame

It’s best to use concat() to combine multiple files. See the cookbook for an example.

Iterating through files chunk by chunk

Suppose you wish to iterate through a (potentially very large) file lazily rather than reading the entire file into memory, such as the following:

  1. In [184]: print(open('tmp.sv').read())
  2. |0|1|2|3
  3. 0|0.4691122999071863|-0.2828633443286633|-1.5090585031735124|-1.1356323710171934
  4. 1|1.2121120250208506|-0.17321464905330858|0.11920871129693428|-1.0442359662799567
  5. 2|-0.8618489633477999|-2.1045692188948086|-0.4949292740687813|1.071803807037338
  6. 3|0.7215551622443669|-0.7067711336300845|-1.0395749851146963|0.27185988554282986
  7. 4|-0.42497232978883753|0.567020349793672|0.27623201927771873|-1.0874006912859915
  8. 5|-0.6736897080883706|0.1136484096888855|-1.4784265524372235|0.5249876671147047
  9. 6|0.4047052186802365|0.5770459859204836|-1.7150020161146375|-1.0392684835147725
  10. 7|-0.3706468582364464|-1.1578922506419993|-1.344311812731667|0.8448851414248841
  11. 8|1.0757697837155533|-0.10904997528022223|1.6435630703622064|-1.4693879595399115
  12. 9|0.35702056413309086|-0.6746001037299882|-1.776903716971867|-0.9689138124473498
  13. In [185]: table = pd.read_csv('tmp.sv', sep='|')
  14. In [186]: table
  15. Out[186]:
  16. Unnamed: 0 0 1 2 3
  17. 0 0 0.469112 -0.282863 -1.509059 -1.135632
  18. 1 1 1.212112 -0.173215 0.119209 -1.044236
  19. 2 2 -0.861849 -2.104569 -0.494929 1.071804
  20. 3 3 0.721555 -0.706771 -1.039575 0.271860
  21. 4 4 -0.424972 0.567020 0.276232 -1.087401
  22. 5 5 -0.673690 0.113648 -1.478427 0.524988
  23. 6 6 0.404705 0.577046 -1.715002 -1.039268
  24. 7 7 -0.370647 -1.157892 -1.344312 0.844885
  25. 8 8 1.075770 -0.109050 1.643563 -1.469388
  26. 9 9 0.357021 -0.674600 -1.776904 -0.968914

By specifying a chunksize to read_csv, the return value will be an iterable object of type TextFileReader:

  1. In [187]: reader = pd.read_csv('tmp.sv', sep='|', chunksize=4)
  2. In [188]: reader
  3. Out[188]: <pandas.io.parsers.TextFileReader at 0x7f65f17cf7f0>
  4. In [189]: for chunk in reader:
  5. .....: print(chunk)
  6. .....:
  7. Unnamed: 0 0 1 2 3
  8. 0 0 0.469112 -0.282863 -1.509059 -1.135632
  9. 1 1 1.212112 -0.173215 0.119209 -1.044236
  10. 2 2 -0.861849 -2.104569 -0.494929 1.071804
  11. 3 3 0.721555 -0.706771 -1.039575 0.271860
  12. Unnamed: 0 0 1 2 3
  13. 4 4 -0.424972 0.567020 0.276232 -1.087401
  14. 5 5 -0.673690 0.113648 -1.478427 0.524988
  15. 6 6 0.404705 0.577046 -1.715002 -1.039268
  16. 7 7 -0.370647 -1.157892 -1.344312 0.844885
  17. Unnamed: 0 0 1 2 3
  18. 8 8 1.075770 -0.10905 1.643563 -1.469388
  19. 9 9 0.357021 -0.67460 -1.776904 -0.968914

Specifying iterator=True will also return the TextFileReader object:

  1. In [190]: reader = pd.read_csv('tmp.sv', sep='|', iterator=True)
  2. In [191]: reader.get_chunk(5)
  3. Out[191]:
  4. Unnamed: 0 0 1 2 3
  5. 0 0 0.469112 -0.282863 -1.509059 -1.135632
  6. 1 1 1.212112 -0.173215 0.119209 -1.044236
  7. 2 2 -0.861849 -2.104569 -0.494929 1.071804
  8. 3 3 0.721555 -0.706771 -1.039575 0.271860
  9. 4 4 -0.424972 0.567020 0.276232 -1.087401

Specifying the parser engine

Under the hood pandas uses a fast and efficient parser implemented in C as well as a Python implementation which is currently more feature-complete. Where possible pandas uses the C parser (specified as engine='c'), but may fall back to Python if C-unsupported options are specified. Currently, C-unsupported options include:

  • sep other than a single character (e.g. regex separators)
  • skipfooter
  • sep=None with delim_whitespace=False

Specifying any of the above options will produce a ParserWarning unless the python engine is selected explicitly using engine='python'.

Reading remote files

You can pass in a URL to a CSV file:

  1. df = pd.read_csv('https://download.bls.gov/pub/time.series/cu/cu.item',
  2. sep='\t')

S3 URLs are handled as well but require installing the S3Fs library:

  1. df = pd.read_csv('s3://pandas-test/tips.csv')

If your S3 bucket requires credentials you will need to set them as environment variables or in the ~/.aws/credentials config file, refer to the S3Fs documentation on credentials.

Writing out data

Writing to CSV format

The Series and DataFrame objects have an instance method to_csv which allows storing the contents of the object as a comma-separated-values file. The function takes a number of arguments. Only the first is required.

  • path_or_buf: A string path to the file to write or a file object. If a file object it must be opened with newline=’‘
  • sep : Field delimiter for the output file (default “,”)
  • na_rep: A string representation of a missing value (default ‘’)
  • float_format: Format string for floating point numbers
  • columns: Columns to write (default None)
  • header: Whether to write out the column names (default True)
  • index: whether to write row (index) names (default True)
  • index_label: Column label(s) for index column(s) if desired. If None (default), and header and index are True, then the index names are used. (A sequence should be given if the DataFrame uses MultiIndex).
  • mode : Python write mode, default ‘w’
  • encoding: a string representing the encoding to use if the contents are non-ASCII, for Python versions prior to 3
  • line_terminator: Character sequence denoting line end (default os.linesep)
  • quoting: Set quoting rules as in csv module (default csv.QUOTE_MINIMAL). Note that if you have set a float_format then floats are converted to strings and csv.QUOTE_NONNUMERIC will treat them as non-numeric
  • quotechar: Character used to quote fields (default ‘”’)
  • doublequote: Control quoting of quotechar in fields (default True)
  • escapechar: Character used to escape sep and quotechar when appropriate (default None)
  • chunksize: Number of rows to write at a time
  • date_format: Format string for datetime objects

Writing a formatted string

The DataFrame object has an instance method to_string which allows control over the string representation of the object. All arguments are optional:

  • buf default None, for example a StringIO object
  • columns default None, which columns to write
  • col_space default None, minimum width of each column.
  • na_rep default NaN, representation of NA value
  • formatters default None, a dictionary (by column) of functions each of which takes a single argument and returns a formatted string
  • float_format default None, a function which takes a single (float) argument and returns a formatted string; to be applied to floats in the DataFrame.
  • sparsify default True, set to False for a DataFrame with a hierarchical index to print every MultiIndex key at each row.
  • index_names default True, will print the names of the indices
  • index default True, will print the index (ie, row labels)
  • header default True, will print the column labels
  • justify default left, will print column headers left- or right-justified

The Series object also has a to_string method, but with only the buf, na_rep, float_format arguments. There is also a length argument which, if set to True, will additionally output the length of the Series.

JSON

读取和写入 JSON 格式的文本和字符串。

Writing JSON

一个SeriesDataFrame 能转化成一个有效的JSON字符串。使用to_json 同可选的参数:

  • path_or_buf : 写入输出的路径名或缓存可以是None , 在这种情况下会返回一个JSON字符串。
  • orient :

    Series :

    • 默认是 index
    • 允许的值可以是{split, records, index}。

    DataFrame :

    • 默认是 columns ;
    • 允许的值可以是{split, records, index, columns, values, table}。

    JSON字符串的格式:

split dict like {index -> [index], columns -> [columns], data -> [values]}
records list like [{column -> value}, … , {column -> value}]
index dict like {index -> {column -> value}}
columns dict like {column -> {index -> value}}
values just the values array
  • date_format : 字符串,日期类型的转换,’eposh’是时间戳,’iso’是 ISO8601。

  • double_precision : 当要编码的是浮点数值时使用的小数位数,默认是 10。

  • force_ascii : 强制编码字符串为 ASCII , 默认是True。

  • date_unit : 时间单位被编码来管理时间戳 和 ISO8601精度。’s’, ‘ms’, ‘us’ 或’ns’中的一个分别为 秒,毫秒,微秒,纳秒。默认是 ‘ms’。

  • default_handler : 如果一个对象没有转换成一个恰当的JSON格式,处理程序就会被调用。采用单个参数,即要转换的对象,并返回一个序列化的对象。

  • lines : 如果面向 records ,就将每行写入记录为json。

注意:NaN‘S , NaT‘S 和None 将会被转换为null, 并且datetime 将会基于date_formatdate_unit 两个参数转换。

  1. In [192]: dfj = pd.DataFrame(np.random.randn(5, 2), columns=list('AB'))
  2. In [193]: json = dfj.to_json()
  3. In [194]: json
  4. Out[194]: '{"A":{"0":-1.2945235903,"1":0.2766617129,"2":-0.0139597524,"3":-0.0061535699,"4":0.8957173022},"B":{"0":0.4137381054,
  5. "1":-0.472034511,"2":-0.3625429925,"3":-0.923060654,"4":0.8052440254}}'

面向选项(Orient options)

要生成JSON文件/字符串,这儿有很多可选的格式。如下面的 DataFrameSeries :

  1. In [195]: dfjo = pd.DataFrame(dict(A=range(1, 4), B=range(4, 7), C=range(7, 10)),
  2. ..... : columns=list('ABC'), index=list('xyz'))
  3. ..... :
  4. In [196]: dfjo
  5. Out[196]:
  6. A B C
  7. x 1 4 7
  8. y 2 5 8
  9. z 3 6 9
  10. In [197]: sjo = pd.Series(dict(x=15, y=16, z=17), name='D')
  11. In [198]: sjo
  12. Out[198]:
  13. x 15
  14. y 16
  15. z 17
  16. Name: D, dtype: int64

面向列 序列化数据(默认是 DataFrame)来作为嵌套的JSON对象,且列标签充当主索引:

  1. In [199]: dfjo.to_json(orient="columns")
  2. Out[199]: '{"A":{"x":1,"y":2,"z":3},"B":{"x":4,"y":5,"z":6},"C":{"x":7,"y":8,"z":9}}'
  3. # Not available for Series (不适用于 Series)

面向索引 (默认是 Series) 与面向列类似,但是索引标签是主键:

  1. In [200]: dfjo.to_json(orient="index")
  2. Out[200]: '{"x":{"A":1,"B":4,"C":7},"y":{"A":2,"B":5,"C":8},"z":{"A":3,"B":6,"C":9}}'
  3. In [201]: sjo.to_json(orient="index")
  4. Out[201]: '{"x":15,"y":16,"z":17}'

面向记录 序列化数据为一列JSON数组 -> 值的记录,索引标签不包括在内。这个在传递 DataFrame 数据到绘图库的时候很有用,例如JavaScript库 d3.js :

  1. In [202]: dfjo.to_json(orient="records")
  2. Out[202]: '[{"A":1,"B":4,"C":7},{"A":2,"B":5,"C":8},{"A":3,"B":6,"C":9}]'
  3. In [203]: sjo.to_json(orient="records")
  4. Out[203]: '[15,16,17]'

面向值 是一个概要的选项,它只序列化为嵌套的JSON数组值,列和索引标签不包括在内:

  1. In [204]: dfjo.to_json(orient="values")
  2. Out[204]: '[[1,4,7],[2,5,8],[3,6,9]]'
  3. # Not available for Series

面向切分 序列化成一个JSON对象,它包括单项的值、索引和列。Series 的命名也包括:

  1. In [205]: dfjo.to_json(orient="split")
  2. Out[205]: '{"columns":["A","B","C"],"index":["x","y","z"],"data":[[1,4,7],[2,5,8],[3,6,9]]}'
  3. In [206]: sjo.to_json(orient="split")
  4. Out[206]: '{"name":"D","index":["x","y","z"],"data":[15,16,17]}'

面向表格 序列化为JSON的 表格模式(Table Schema),允许保存为元数据,包括但不限于dtypes和索引名称。

::: tip 注意

任何面向选项编码为一个JSON对象在转为序列化期间将不会保留索引和列标签的顺序。如果你想要保留标签的顺序,就使用split选项,因为它使用有序的容器。

:::

日期处理(Date handling)

用ISO日期格式来写入:

  1. In [207]: dfd = pd.DataFrame(np.random.randn(5, 2), columns=list('AB'))
  2. In [208]: dfd['date'] = pd.Timestamp('20130101')
  3. In [209]: dfd = dfd.sort_index(1, ascending=False)
  4. In [210]: json = dfd.to_json(date_format='iso')
  5. In [211]: json
  6. Out[211]: '{"date":{"0":"2013-01-01T00:00:00.000Z","1":"2013-01-01T00:00:00.000Z","2":"2013-01-01T00:00:00.000Z","3":"2013-01-01T00:00:00.000Z","4":"2013-01-01T00:00:00.000Z"},"B":{"0":2.5656459463,"1":1.3403088498,"2":-0.2261692849,"3":0.8138502857,"4":-0.8273169356},"A":{"0":-1.2064117817,"1":1.4312559863,"2":-1.1702987971,"3":0.4108345112,"4":0.1320031703}}'

以ISO日期格式的微秒单位写入:

  1. In [212]: json = dfd.to_json(date_format='iso', date_unit='us')
  2. In [213]: json
  3. Out[213]: '{"date":{"0":"2013-01-01T00:00:00.000000Z","1":"2013-01-01T00:00:00.000000Z","2":"2013-01-01T00:00:00.000000Z","3":"2013-01-01T00:00:00.000000Z","4":"2013-01-01T00:00:00.000000Z"},"B":{"0":2.5656459463,"1":1.3403088498,"2":-0.2261692849,"3":0.8138502857,"4":-0.8273169356},"A":{"0":-1.2064117817,"1":1.4312559863,"2":-1.1702987971,"3":0.4108345112,"4":0.1320031703}}

时间戳的时间,以秒为单位:

  1. In [214]: json = dfd.to_json(date_format='epoch', date_unit='s')
  2. In [215]: json
  3. Out[215]: '{"date":{"0":1356998400,"1":1356998400,"2":1356998400,"3":1356998400,"4":1356998400},"B":{"0":2.5656459463,"1":1.3403088498,"2":-0.2261692849,"3":0.8138502857,"4":-0.8273169356},"A":{"0":-1.2064117817,"1":1.4312559863,"2":-1.1702987971,"3":0.4108345112,"4":0.1320031703}}'

写入文件,以日期索引和日期列格式:

  1. In [216]: dfj2 = dfj.copy()
  2. In [217]: dfj2['date'] = pd.Timestamp('20130101')
  3. In [218]: dfj2['ints'] = list(range(5))
  4. In [219]: dfj2['bools'] = True
  5. In [220]: dfj2.index = pd.date_range('20130101', periods=5)
  6. In [221]: dfj2.to_json('test.json')
  7. In [222]: with open('test.json') as fh:
  8. .....: print(fh.read())
  9. .....:
  10. {"A":{"1356998400000":-1.2945235903,"1357084800000":0.2766617129,"1357171200000":-0.0139597524,"1357257600000":-0.0061535699,"1357344000000":0.8957173022},"B":{"1356998400000":0.4137381054,"1357084800000":-0.472034511,"1357171200000":-0.3625429925,"1357257600000":-0.923060654,"1357344000000":0.8052440254},"date":{"1356998400000":1356998400000,"1357084800000":1356998400000,"1357171200000":1356998400000,"1357257600000":1356998400000,"1357344000000":1356998400000},"ints":{"1356998400000":0,"1357084800000":1,"1357171200000":2,"1357257600000":3,"1357344000000":4},"bools":{"1356998400000":true,"1357084800000":true,"1357171200000":true,"1357257600000":true,"1357344000000":true}}

回退行为(Fallback behavior)

如果JSON序列不能直接处理容器的内容,他将会以下面的方式发生回退:

  • 如果dtype是不被支持的(例如:np.complex ) ,则将为每个值调用 default_handler (如果提供),否则引发异常。

  • 如果对象不受支持,它将尝试以下操作:

    • 检查一下是否对象被定义为 toDict 的方法并调用它。toDict的方法将返回一个dict,它将会是序列化的JSON格式。
    • 如果提供了default_handler,则调用它。
    • 通过遍历其内容将对象转换为dict。 但是,这通常会出现OverflowError而失败或抛出意外的结果。

通常,对于不被支持的对象或dtypes,处理的最佳方法是提供default_handler。 例如:

  1. >>> DataFrame([1.0, 2.0, complex(1.0, 2.0)]).to_json() # raises
  2. RuntimeError: Unhandled numpy dtype 15

可以通过指定一个简单default_handler来处理:

  1. In [223]: pd.DataFrame([1.0, 2.0, complex(1.0, 2.0)]).to_json(default_handler=str)
  2. Out[223]: '{"0":{"0":"(1+0j)","1":"(2+0j)","2":"(1+2j)"}}'

JSON的读取(Reading JSON)

把JSON字符串读取到pandas对象里会采用很多参数。如果typ没有提供或者为None,解析器将尝试解析DataFrame。 要强制地进行Series解析,请传递参数如typ = series

  • filepath_or_buffer : 一个有效的JSON字符串或文件句柄/StringIO(在内存中读写字符串)。字符串可以是一个URL。有效的URL格式包括http, ftp, S3和文件。对于文件型的URL, 最好有个主机地址。例如一个本地文件可以是 file://localhost/path/to/table.json 这样的格式。

  • typ : 要恢复的对象类型(series或者frame),默认“frame”。

  • orient :

    Series:

    • 默认是 index
    • 允许值为{ split, records, index}。

    DataFrame:

    • 默认是 columns
    • 允许值是{ split, records, index, columns, values, table}。

JSON字符串的格式:

split dict like {index -> [index], columns -> [columns], data -> [values]}
records list like [{column -> value}, … , {column -> value}]
index dict like {index -> {column -> value}}
columns dict like {column -> {index -> value}}
values just the values array
table adhering to the JSON Table Schema
  • dtype: 如果为True,推断dtypes,如果列为dtype的字典,则使用那些;如果为False,则根本不推断dtypes,默认为True,仅适用于数据。

  • convert_axes : 布尔值,尝试将轴转换为正确的dtypes,默认为True

  • convert_dates :一列列表要解析为日期; 如果为True,则尝试解析类似日期的列,默认为True

  • keep_default_dates :布尔值,默认为True。 如果解析日期,则解析默认的类似日期的列。

  • numpy :直接解码为NumPy数组。 默认为False; 虽然标签可能是非数字的,但仅支持数字数据。 另请注意,如果numpy = True,则每个术语的JSON顺序 必须 相同。

  • precise_float :布尔值,默认为False。 当解码字符串为双值时,设置为能使用更高精度(strtod)函数。 默认(False)快速使用但不精确的内置功能。

  • date_unit :字符串,用于检测转换日期的时间戳单位。 默认无。 默认情况下,将检测时间戳精度,如果不需要,则传递’s’,’ms’,’us’或’ns’中的一个,以强制时间戳精度分别为秒,毫秒,微秒或纳秒。

  • lines :读取文件每行作为一个JSON对象。

  • encoding :用于解码py3字节的编码。

  • chunksize :当与lines = True结合使用时,返回一个Json读取器(JSONReader),每次迭代读取chunksize行。

如果JSON不能解析,解析器将抛出ValueError / TypeError / AssertionError中的一个错误。

如果在编码为JSON时使用非默认的orient方法,请确保在此处传递相同的选项以便解码产生合理的结果,请参阅 Orient Options以获取概述。

数据转换(Data conversion)

convert_axes = Truedtype = Trueconvert_dates = True的默认值将尝试解析轴,并将所有数据解析为适当的类型,包括日期。 如果需要覆盖特定的dtypes,请将字典传递给dtype。 如果您需要在轴中保留类似字符串的数字(例如“1”,“2”),则只应将convert_axes设置为False

::: tip 注意

如果convert_dates = True并且数据和/或列标签显示为“类似日期(’date-like’)“,则可以将大的整数值转换为日期。 确切的标准取决于指定的date_unit。 ‘date-like’表示列标签符合以下标准之一:

  • 结尾以 '_at'
  • 结尾以 '_time'
  • 开头以 'timestamp'
  • 它是 'modified'
  • 它是 'date'

:::

::: danger 警告

在读取JSON数据时,自动强制转换为dtypes有一些不同寻常的地方:

  • 索引可以按序列化的不同顺序重建,也就是说,返回的顺序不能保证与序列化之前的顺序相同

  • 如果可以安全地,那么一列浮动(float)数据将被转换为一列整数(integer),例如 一列 1

  • 布尔列将在重建时转换为整数(integer)

因此,有时你会有那样的时刻可能想通过dtype关键字参数指定特定的dtypes。

:::

读取JSON字符串:

  1. In [224]: pd.read_json(json)
  2. Out[224]:
  3. date B A
  4. 0 2013-01-01 2.565646 -1.206412
  5. 1 2013-01-01 1.340309 1.431256
  6. 2 2013-01-01 -0.226169 -1.170299
  7. 3 2013-01-01 0.813850 0.410835
  8. 4 2013-01-01 -0.827317 0.132003

读取文件:

  1. In [225]: pd.read_json('test.json')
  2. Out[225]:
  3. A B date ints bools
  4. 2013-01-01 -1.294524 0.413738 2013-01-01 0 True
  5. 2013-01-02 0.276662 -0.472035 2013-01-01 1 True
  6. 2013-01-03 -0.013960 -0.362543 2013-01-01 2 True
  7. 2013-01-04 -0.006154 -0.923061 2013-01-01 3 True
  8. 2013-01-05 0.895717 0.805244 2013-01-01 4 True

不要转换任何数据(但仍然转换轴和日期):

  1. In [226]: pd.read_json('test.json', dtype=object).dtypes
  2. Out[226]:
  3. A object
  4. B object
  5. date object
  6. ints object
  7. bools object
  8. dtype: object

指定转换的dtypes:

  1. In [227]: pd.read_json('test.json', dtype={'A': 'float32', 'bools': 'int8'}).dtypes
  2. Out[227]:
  3. A float32
  4. B float64
  5. date datetime64[ns]
  6. ints int64
  7. bools int8
  8. dtype: object

保留字符串索引:

  1. In [228]: si = pd.DataFrame(np.zeros((4, 4)), columns=list(range(4)),
  2. .....: index=[str(i) for i in range(4)])
  3. .....:
  4. In [229]: si
  5. Out[229]:
  6. 0 1 2 3
  7. 0 0.0 0.0 0.0 0.0
  8. 1 0.0 0.0 0.0 0.0
  9. 2 0.0 0.0 0.0 0.0
  10. 3 0.0 0.0 0.0 0.0
  11. In [230]: si.index
  12. Out[230]: Index(['0', '1', '2', '3'], dtype='object')
  13. In [231]: si.columns
  14. Out[231]: Int64Index([0, 1, 2, 3], dtype='int64')
  15. In [232]: json = si.to_json()
  16. In [233]: sij = pd.read_json(json, convert_axes=False)
  17. In [234]: sij
  18. Out[234]:
  19. 0 1 2 3
  20. 0 0 0 0 0
  21. 1 0 0 0 0
  22. 2 0 0 0 0
  23. 3 0 0 0 0
  24. In [235]: sij.index
  25. Out[235]: Index(['0', '1', '2', '3'], dtype='object')
  26. In [236]: sij.columns
  27. Out[236]: Index(['0', '1', '2', '3'], dtype='object')

以纳秒为单位的日期需要以纳秒为单位读回:

  1. In [237]: json = dfj2.to_json(date_unit='ns')
  2. # Try to parse timestamps as milliseconds -> Won't Work
  3. In [238]: dfju = pd.read_json(json, date_unit='ms')
  4. In [239]: dfju
  5. Out[239]:
  6. A B date ints bools
  7. 1356998400000000000 -1.294524 0.413738 1356998400000000000 0 True
  8. 1357084800000000000 0.276662 -0.472035 1356998400000000000 1 True
  9. 1357171200000000000 -0.013960 -0.362543 1356998400000000000 2 True
  10. 1357257600000000000 -0.006154 -0.923061 1356998400000000000 3 True
  11. 1357344000000000000 0.895717 0.805244 1356998400000000000 4 True
  12. # Let pandas detect the correct precision
  13. In [240]: dfju = pd.read_json(json)
  14. In [241]: dfju
  15. Out[241]:
  16. A B date ints bools
  17. 2013-01-01 -1.294524 0.413738 2013-01-01 0 True
  18. 2013-01-02 0.276662 -0.472035 2013-01-01 1 True
  19. 2013-01-03 -0.013960 -0.362543 2013-01-01 2 True
  20. 2013-01-04 -0.006154 -0.923061 2013-01-01 3 True
  21. 2013-01-05 0.895717 0.805244 2013-01-01 4 True
  22. # Or specify that all timestamps are in nanoseconds
  23. In [242]: dfju = pd.read_json(json, date_unit='ns')
  24. In [243]: dfju
  25. Out[243]:
  26. A B date ints bools
  27. 2013-01-01 -1.294524 0.413738 2013-01-01 0 True
  28. 2013-01-02 0.276662 -0.472035 2013-01-01 1 True
  29. 2013-01-03 -0.013960 -0.362543 2013-01-01 2 True
  30. 2013-01-04 -0.006154 -0.923061 2013-01-01 3 True
  31. 2013-01-05 0.895717 0.805244 2013-01-01 4 True

Numpy 参数

::: tip 注意

这仅支持数值数据。 索引和列标签可以是非数字的,例如 字符串,日期等。

:::

如果将numpy = True传递给read_json,则会在反序列化期间尝试找到适当的dtype,然后直接解码到NumPy数组,从而绕过对中间Python对象的需求。

如果要反序列化大量数值数据,这可以提供加速:

  1. In [244]: randfloats = np.random.uniform(-100, 1000, 10000)
  2. In [245]: randfloats.shape = (1000, 10)
  3. In [246]: dffloats = pd.DataFrame(randfloats, columns=list('ABCDEFGHIJ'))
  4. In [247]: jsonfloats = dffloats.to_json()
  1. In [248]: %timeit pd.read_json(jsonfloats)
  2. 12.4 ms +- 116 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
  1. In [249]: %timeit pd.read_json(jsonfloats, numpy=True)
  2. 9.56 ms +- 82.8 us per loop (mean +- std. dev. of 7 runs, 100 loops each)

对于较小的数据集,加速不太明显:

  1. In [250]: jsonfloats = dffloats.head(100).to_json()
  1. In [251]: %timeit pd.read_json(jsonfloats)
  2. 8.05 ms +- 120 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
  1. In [252]: %timeit pd.read_json(jsonfloats, numpy=True)
  2. 7 ms +- 162 us per loop (mean +- std. dev. of 7 runs, 100 loops each)

::: danger 警告

直接NumPy解码会产生许多假设并可能导致失败,或如果这些假设不满足,则产生意外地输出:

  • 数据是数值。
  • 数据是统一的。 从解码的第一个值中找到dtype。可能会引发ValueError错误,或者如果这个条件不满足可能产生不正确的输出。

  • 标签是有序的。 标签仅从第一个容器读取,假设每个后续行/列已按相同顺序编码。 如果使用to_json编码数据,则应该满足这一要求,但如果JSON来自其他来源,则可能不是这种情况。

:::

标准化(Normalization)

pandas提供了一个实用程序函数来获取一个字典或字典列表,并将这个半结构化数据规范化为一个平面表。

  1. In [253]: from pandas.io.json import json_normalize
  2. In [254]: data = [{'id': 1, 'name': {'first': 'Coleen', 'last': 'Volk'}},
  3. .....: {'name': {'given': 'Mose', 'family': 'Regner'}},
  4. .....: {'id': 2, 'name': 'Faye Raker'}]
  5. .....:
  6. In [255]: json_normalize(data)
  7. Out[255]:
  8. id name.first name.last name.given name.family name
  9. 0 1.0 Coleen Volk NaN NaN NaN
  10. 1 NaN NaN NaN Mose Regner NaN
  11. 2 2.0 NaN NaN NaN NaN Faye Raker
  1. In [256]: data = [{'state': 'Florida',
  2. .....: 'shortname': 'FL',
  3. .....: 'info': {'governor': 'Rick Scott'},
  4. .....: 'counties': [{'name': 'Dade', 'population': 12345},
  5. .....: {'name': 'Broward', 'population': 40000},
  6. .....: {'name': 'Palm Beach', 'population': 60000}]},
  7. .....: {'state': 'Ohio',
  8. .....: 'shortname': 'OH',
  9. .....: 'info': {'governor': 'John Kasich'},
  10. .....: 'counties': [{'name': 'Summit', 'population': 1234},
  11. .....: {'name': 'Cuyahoga', 'population': 1337}]}]
  12. .....:
  13. In [257]: json_normalize(data, 'counties', ['state', 'shortname', ['info', 'governor']])
  14. Out[257]:
  15. name population state shortname info.governor
  16. 0 Dade 12345 Florida FL Rick Scott
  17. 1 Broward 40000 Florida FL Rick Scott
  18. 2 Palm Beach 60000 Florida FL Rick Scott
  19. 3 Summit 1234 Ohio OH John Kasich
  20. 4 Cuyahoga 1337 Ohio OH John Kasich

max_level 参数提供了对结束规范化的级别的更多控制。 当max_level = 1时,以下代码段会标准化,直到提供了字典的第一个嵌套级别为止。

  1. In [258]: data = [{'CreatedBy': {'Name': 'User001'},
  2. .....: 'Lookup': {'TextField': 'Some text',
  3. .....: 'UserField': {'Id': 'ID001',
  4. .....: 'Name': 'Name001'}},
  5. .....: 'Image': {'a': 'b'}
  6. .....: }]
  7. .....:
  8. In [259]: json_normalize(data, max_level=1)
  9. Out[259]:
  10. CreatedBy.Name Lookup.TextField Lookup.UserField Image.a
  11. 0 User001 Some text {'Id': 'ID001', 'Name': 'Name001'} b

json的行分割(Line delimited json)

New in version 0.19.0.

pandas能够读取和写入行分隔的json文件通常是在用Hadoop或Spark进行数据处理的管道中。

New in version 0.21.0.

对于行分隔的json文件,pandas也可以返回一个迭代器,它能一次读取chunksize行。 这对于大型文件或从数据流中读取非常有用。

  1. In [260]: jsonl = '''
  2. .....: {"a": 1, "b": 2}
  3. .....: {"a": 3, "b": 4}
  4. .....: '''
  5. .....:
  6. In [261]: df = pd.read_json(jsonl, lines=True)
  7. In [262]: df
  8. Out[262]:
  9. a b
  10. 0 1 2
  11. 1 3 4
  12. In [263]: df.to_json(orient='records', lines=True)
  13. Out[263]: '{"a":1,"b":2}\n{"a":3,"b":4}'
  14. # reader is an iterator that returns `chunksize` lines each iteration
  15. In [264]: reader = pd.read_json(StringIO(jsonl), lines=True, chunksize=1)
  16. In [265]: reader
  17. Out[265]: <pandas.io.json._json.JsonReader at 0x7f65f15bac18>
  18. In [266]: for chunk in reader:
  19. .....: print(chunk)
  20. .....:
  21. Empty DataFrame
  22. Columns: []
  23. Index: []
  24. a b
  25. 0 1 2
  26. a b
  27. 1 3 4

表模式(Table schema)

New in version 0.20.0.

表模式(Table schema)是用于将表格数据集描述为JSON对象的一种规范。 JSON包含有关字段名称,类型和其他属性的信息。 你可以使用面向table来构建一个JSON字符串包含两个字段,schemadata

  1. In [267]: df = pd.DataFrame({'A': [1, 2, 3],
  2. .....: 'B': ['a', 'b', 'c'],
  3. .....: 'C': pd.date_range('2016-01-01', freq='d', periods=3)},
  4. .....: index=pd.Index(range(3), name='idx'))
  5. .....:
  6. In [268]: df
  7. Out[268]:
  8. A B C
  9. idx
  10. 0 1 a 2016-01-01
  11. 1 2 b 2016-01-02
  12. 2 3 c 2016-01-03
  13. In [269]: df.to_json(orient='table', date_format="iso")
  14. Out[269]: '{"schema": {"fields":[{"name":"idx","type":"integer"},{"name":"A","type":"integer"},{"name":"B","type":"string"},{"name":"C","type":"datetime"}],"primaryKey":["idx"],"pandas_version":"0.20.0"}, "data": [{"idx":0,"A":1,"B":"a","C":"2016-01-01T00:00:00.000Z"},{"idx":1,"A":2,"B":"b","C":"2016-01-02T00:00:00.000Z"},{"idx":2,"A":3,"B":"c","C":"2016-01-03T00:00:00.000Z"}]}'

schema字段包含fields主键,它本身包含一个列名称到列对的列表,包括IndexMultiIndex(请参阅下面的类型列表)。 如果(多)索引是唯一的,则schema字段也包含一个primaryKey字段。

第二个字段data包含用面向records来序列化数据。 索引是包括的,并且任何日期时间都是ISO 8601格式,正如表模式规范所要求的那样。

表模式规范中描述了所有支持的全部类型列表。 此表显示了pandas类型的映射:

Pandas type Table Schema type
int64 integer
float64 number
bool boolean
datetime64[ns] datetime
timedelta64[ns] duration
categorical any
object str

关于生成的表模式的一些注意事项:

  • schema对象包含pandas_version的字段。 它包含模式的pandas方言版本,并将随每个修订增加。
  • 序列化时,所有日期都转换为UTC。 甚至是时区的初始值,也被视为UTC,偏移量为0。
  1. In [270]: from pandas.io.json import build_table_schema
  2. In [271]: s = pd.Series(pd.date_range('2016', periods=4))
  3. In [272]: build_table_schema(s)
  4. Out[272]:
  5. {'fields': [{'name': 'index', 'type': 'integer'},
  6. {'name': 'values', 'type': 'datetime'}],
  7. 'primaryKey': ['index'],
  8. 'pandas_version': '0.20.0'}
  • 具有时区的日期时间(在序列化之前),包括具有时区名称的附加字段tz(例如:'US / Central')。
  1. In [273]: s_tz = pd.Series(pd.date_range('2016', periods=12,
  2. .....: tz='US/Central'))
  3. .....:
  4. In [274]: build_table_schema(s_tz)
  5. Out[274]:
  6. {'fields': [{'name': 'index', 'type': 'integer'},
  7. {'name': 'values', 'type': 'datetime', 'tz': 'US/Central'}],
  8. 'primaryKey': ['index'],
  9. 'pandas_version': '0.20.0'}
  • 时间段在序列化之前是转换为时间戳的,因此具有转换为UTC的相同方式。 此外,时间段将包含具有时间段频率的附加字段freq,例如:'A-DEC'
  1. In [275]: s_per = pd.Series(1, index=pd.period_range('2016', freq='A-DEC',
  2. .....: periods=4))
  3. .....:
  4. In [276]: build_table_schema(s_per)
  5. Out[276]:
  6. {'fields': [{'name': 'index', 'type': 'datetime', 'freq': 'A-DEC'},
  7. {'name': 'values', 'type': 'integer'}],
  8. 'primaryKey': ['index'],
  9. 'pandas_version': '0.20.0'}
  • 分类使用any类型和enum约束来列出可能值的集合。 此外,还包括一个ordered字段:
  1. In [277]: s_cat = pd.Series(pd.Categorical(['a', 'b', 'a']))
  2. In [278]: build_table_schema(s_cat)
  3. Out[278]:
  4. {'fields': [{'name': 'index', 'type': 'integer'},
  5. {'name': 'values',
  6. 'type': 'any',
  7. 'constraints': {'enum': ['a', 'b']},
  8. 'ordered': False}],
  9. 'primaryKey': ['index'],
  10. 'pandas_version': '0.20.0'}
  • 如果索引是唯一的,则包含primaryKey字段,它包含了标签数组:
  1. In [279]: s_dupe = pd.Series([1, 2], index=[1, 1])
  2. In [280]: build_table_schema(s_dupe)
  3. Out[280]:
  4. {'fields': [{'name': 'index', 'type': 'integer'},
  5. {'name': 'values', 'type': 'integer'}],
  6. 'pandas_version': '0.20.0'}
  • primaryKey的形式与多索引相同,但在这种情况下,primaryKey是一个数组:
  1. In [281]: s_multi = pd.Series(1, index=pd.MultiIndex.from_product([('a', 'b'),
  2. .....: (0, 1)]))
  3. .....:
  4. In [282]: build_table_schema(s_multi)
  5. Out[282]:
  6. {'fields': [{'name': 'level_0', 'type': 'string'},
  7. {'name': 'level_1', 'type': 'integer'},
  8. {'name': 'values', 'type': 'integer'}],
  9. 'primaryKey': FrozenList(['level_0', 'level_1']),
  10. 'pandas_version': '0.20.0'}
  • 默认命名大致遵循以下规则:

    • 对于series,使用object.name。 如果没有,那么名称就是values
    • 对于DataFrames,使用列名称的字符串化版本
    • 对于Index(不是MultiIndex),使用index.name,如果为None,则使用回退index
    • 对于MultiIndex,使用mi.names。 如果任何级别没有名称,则使用level_

New in version 0.23.0.

read_json也接受orient ='table'作为参数。 这允许以可循环移动的方式保存诸如dtypes和索引名称之类的元数据。

  1. In [283]: df = pd.DataFrame({'foo': [1, 2, 3, 4],
  2. .....: 'bar': ['a', 'b', 'c', 'd'],
  3. .....: 'baz': pd.date_range('2018-01-01', freq='d', periods=4),
  4. .....: 'qux': pd.Categorical(['a', 'b', 'c', 'c'])
  5. .....: }, index=pd.Index(range(4), name='idx'))
  6. .....:
  7. In [284]: df
  8. Out[284]:
  9. foo bar baz qux
  10. idx
  11. 0 1 a 2018-01-01 a
  12. 1 2 b 2018-01-02 b
  13. 2 3 c 2018-01-03 c
  14. 3 4 d 2018-01-04 c
  15. In [285]: df.dtypes
  16. Out[285]:
  17. foo int64
  18. bar object
  19. baz datetime64[ns]
  20. qux category
  21. dtype: object
  22. In [286]: df.to_json('test.json', orient='table')
  23. In [287]: new_df = pd.read_json('test.json', orient='table')
  24. In [288]: new_df
  25. Out[288]:
  26. foo bar baz qux
  27. idx
  28. 0 1 a 2018-01-01 a
  29. 1 2 b 2018-01-02 b
  30. 2 3 c 2018-01-03 c
  31. 3 4 d 2018-01-04 c
  32. In [289]: new_df.dtypes
  33. Out[289]:
  34. foo int64
  35. bar object
  36. baz datetime64[ns]
  37. qux category
  38. dtype: object

请注意,作为 Index 名称的文字字符串’index’是不能循环移动的,也不能在 MultiIndex 中用以'level_'开头的任何名称。 这些默认情况下在 DataFrame.to_json() 中用于指示缺失值和后续读取无法区分的目的。

  1. In [290]: df.index.name = 'index'
  2. In [291]: df.to_json('test.json', orient='table')
  3. In [292]: new_df = pd.read_json('test.json', orient='table')
  4. In [293]: print(new_df.index.name)
  5. None

HTML

读取HTML的内容

::: danger 警告:

我们强烈建议你阅读 HTML Table Parsing gotchas里面相关的围绕BeautifulSoup4/html5lib/lxml解析器部分的问题。

:::

顶级的read_html()函数能接受HTML字符串/文件/URL格式,并且能解析HTML 表格为pandasDataFrames的列表,让我们看看下面的几个例子。

::: tip 注意:

read_html返回的是一个DataFrame对象的list,即便在HTML页面里只包含单个表格。

:::

读取一个没有选项的URL:

  1. In [294]: url = 'https://www.fdic.gov/bank/individual/failed/banklist.html'
  2. In [295]: dfs = pd.read_html(url)
  3. In [296]: dfs
  4. Out[296]:
  5. [ Bank Name City ST CERT Acquiring Institution Closing Date Updated Date
  6. 0 The Enloe State Bank Cooper TX 10716 Legend Bank, N. A. May 31, 2019 June 18, 2019
  7. 1 Washington Federal Bank for Savings Chicago IL 30570 Royal Savings Bank December 15, 2017 February 1, 2019
  8. 2 The Farmers and Merchants State Bank of Argonia Argonia KS 17719 Conway Bank October 13, 2017 February 21, 2018
  9. 3 Fayette County Bank Saint Elmo IL 1802 United Fidelity Bank, fsb May 26, 2017 January 29, 2019
  10. 4 Guaranty Bank, (d/b/a BestBank in Georgia & Mi... Milwaukee WI 30003 First-Citizens Bank & Trust Company May 5, 2017 March 22, 2018
  11. .. ... ... .. ... ... ... ...
  12. 551 Superior Bank, FSB Hinsdale IL 32646 Superior Federal, FSB July 27, 2001 August 19, 2014
  13. 552 Malta National Bank Malta OH 6629 North Valley Bank May 3, 2001 November 18, 2002
  14. 553 First Alliance Bank & Trust Co. Manchester NH 34264 Southern New Hampshire Bank & Trust February 2, 2001 February 18, 2003
  15. 554 National State Bank of Metropolis Metropolis IL 3815 Banterra Bank of Marion December 14, 2000 March 17, 2005
  16. 555 Bank of Honolulu Honolulu HI 21029 Bank of the Orient October 13, 2000 March 17, 2005
  17. [556 rows x 7 columns]]

::: tip 注意:

上面的URL数据修改了每个周一以至于上面的数据结果跟下面的数据结果可能有轻微的不同。

:::

从上面的URL读取文件内容并且传递它给read_html作为一个字符串:

  1. In [297]: with open(file_path, 'r') as f:
  2. .....: dfs = pd.read_html(f.read())
  3. .....:
  4. In [298]: dfs
  5. Out[298]:
  6. [ Bank Name City ST CERT Acquiring Institution Closing Date Updated Date
  7. 0 Banks of Wisconsin d/b/a Bank of Kenosha Kenosha WI 35386 North Shore Bank, FSB May 31, 2013 May 31, 2013
  8. 1 Central Arizona Bank Scottsdale AZ 34527 Western State Bank May 14, 2013 May 20, 2013
  9. 2 Sunrise Bank Valdosta GA 58185 Synovus Bank May 10, 2013 May 21, 2013
  10. 3 Pisgah Community Bank Asheville NC 58701 Capital Bank, N.A. May 10, 2013 May 14, 2013
  11. 4 Douglas County Bank Douglasville GA 21649 Hamilton State Bank April 26, 2013 May 16, 2013
  12. .. ... ... .. ... ... ... ...
  13. 500 Superior Bank, FSB Hinsdale IL 32646 Superior Federal, FSB July 27, 2001 June 5, 2012
  14. 501 Malta National Bank Malta OH 6629 North Valley Bank May 3, 2001 November 18, 2002
  15. 502 First Alliance Bank & Trust Co. Manchester NH 34264 Southern New Hampshire Bank & Trust February 2, 2001 February 18, 2003
  16. 503 National State Bank of Metropolis Metropolis IL 3815 Banterra Bank of Marion December 14, 2000 March 17, 2005
  17. 504 Bank of Honolulu Honolulu HI 21029 Bank of the Orient October 13, 2000 March 17, 2005
  18. [505 rows x 7 columns]]

甚至如果你想,你还可以传递一个StringIO的实例:

  1. In [299]: with open(file_path, 'r') as f:
  2. .....: sio = StringIO(f.read())
  3. .....:
  4. In [300]: dfs = pd.read_html(sio)
  5. In [301]: dfs
  6. Out[301]:
  7. [ Bank Name City ST CERT Acquiring Institution Closing Date Updated Date
  8. 0 Banks of Wisconsin d/b/a Bank of Kenosha Kenosha WI 35386 North Shore Bank, FSB May 31, 2013 May 31, 2013
  9. 1 Central Arizona Bank Scottsdale AZ 34527 Western State Bank May 14, 2013 May 20, 2013
  10. 2 Sunrise Bank Valdosta GA 58185 Synovus Bank May 10, 2013 May 21, 2013
  11. 3 Pisgah Community Bank Asheville NC 58701 Capital Bank, N.A. May 10, 2013 May 14, 2013
  12. 4 Douglas County Bank Douglasville GA 21649 Hamilton State Bank April 26, 2013 May 16, 2013
  13. .. ... ... .. ... ... ... ...
  14. 500 Superior Bank, FSB Hinsdale IL 32646 Superior Federal, FSB July 27, 2001 June 5, 2012
  15. 501 Malta National Bank Malta OH 6629 North Valley Bank May 3, 2001 November 18, 2002
  16. 502 First Alliance Bank & Trust Co. Manchester NH 34264 Southern New Hampshire Bank & Trust February 2, 2001 February 18, 2003
  17. 503 National State Bank of Metropolis Metropolis IL 3815 Banterra Bank of Marion December 14, 2000 March 17, 2005
  18. 504 Bank of Honolulu Honolulu HI 21029 Bank of the Orient October 13, 2000 March 17, 2005
  19. [505 rows x 7 columns]]

::: tip 注意:

以下的例子在IPython的程序中不会运行,因为有太多的网络接入函数减缓了文档的创建。如果你的程序报错或者例子不运行,请立即向 pandas GitHub issues page 上报。

:::

读取一个URL并匹配表格里面所包含的具体文本内容:

  1. match = 'Metcalf Bank'
  2. df_list = pd.read_html(url, match=match)

指定一个标题行(通过默认的\或者\定位并伴随一个\被用来作为列的索引,如果是多行含有\,则多索引就会被创建);如果已经指定,标题行则从数据减去已解析的标题元素中获取(\元素)。

  1. dfs = pd.read_html(url, header=0)

指定一个索引列:

  1. dfs = pd.read_html(url, index_col=0)

指定跳过行的数量:

  1. dfs = pd.read_html(url, skiprows=0)

指定使用列表来跳过行的数量(xrange(只在Python 2 中)也有效):

  1. dfs = pd.read_html(url, skiprows=range(2))

指定一个HTML属性:

  1. dfs1 = pd.read_html(url, attrs={'id': 'table'})
  2. dfs2 = pd.read_html(url, attrs={'class': 'sortable'})
  3. print(np.array_equal(dfs1[0], dfs2[0])) # Should be True

指定值将会被转换为NaN(非数值):

  1. dfs = pd.read_html(url, na_values=['No Acquirer'])

New in version 0.19.

指定是否保持默认的NaN值的设置:

  1. dfs = pd.read_html(url, keep_default_na=False)

New in version 0.19.

指定列的转换器。这对于有前置零的数字文本数据很有用。默认情况下,数值列会转换成数值类型且前置零会丢失。为了避免这种情况,我们能转换这些列为字符串。

  1. url_mcc = 'https://en.wikipedia.org/wiki/Mobile_country_code'
  2. dfs = pd.read_html(url_mcc, match='Telekom Albania', header=0,
  3. converters={'MNC': str})

New in version 0.19.

把上面的一些结合使用:

  1. dfs = pd.read_html(url, match='Metcalf Bank', index_col=0)

读取pandasto_html输出(同时一些精确的浮点会失去):

  1. df = pd.DataFrame(np.random.randn(2, 2))
  2. s = df.to_html(float_format='{0:.40g}'.format)
  3. dfin = pd.read_html(s, index_col=0)

如果lxml后端是你提供的唯一解析器,那么它将在解析失败时报错。如果你能提供的解析器只有一个就选字符串,但是传递一个字符串列表会是很好的训练,例如,这个函数期望是一个字符串序列。你可以这样使用:

  1. dfs = pd.read_html(url, 'Metcalf Bank', index_col=0, flavor=['lxml'])

或者你可以传递flavor='lxml'而不要列表:

  1. dfs = pd.read_html(url, 'Metcalf Bank', index_col=0, flavor='lxml')

然而,如果你已经安装了bs4 和 html5lib并且传递None['lxml', 'bs4'],那么极大可能会解析成功。注意一旦解析成功了,函数将会返回。

  1. dfs = pd.read_html(url, 'Metcalf Bank', index_col=0, flavor=['lxml', 'bs4'])

写入HTML文件

DataFrame对象具有实例的方法to_html,它能渲染DataFrame的内容为HTML表格。这个函数的参数同上面的to_string方法的一样。

::: tip 注意:

为了简洁起见,这儿显示的不是所有的DataFrame.to_html可选项。所有的选项设置见to_html()

:::

  1. In [302]: df = pd.DataFrame(np.random.randn(2, 2))
  2. In [303]: df
  3. Out[303]:
  4. 0 1
  5. 0 -0.184744 0.496971
  6. 1 -0.856240 1.857977
  7. In [304]: print(df.to_html()) # raw html
  8. <table border="1" class="dataframe">
  9. <thead>
  10. <tr style="text-align: right;">
  11. <th></th>
  12. <th>0</th>
  13. <th>1</th>
  14. </tr>
  15. </thead>
  16. <tbody>
  17. <tr>
  18. <th>0</th>
  19. <td>-0.184744</td>
  20. <td>0.496971</td>
  21. </tr>
  22. <tr>
  23. <th>1</th>
  24. <td>-0.856240</td>
  25. <td>1.857977</td>
  26. </tr>
  27. </tbody>
  28. </table>

HTML:

- 0 1
0 -0.184744 0.496971
1 -0.856240 1.857977
  1. In [302]: df = pd.DataFrame(np.random.randn(2, 2))
  2. In [303]: df
  3. Out[303]:
  4. 0 1
  5. 0 -0.184744 0.496971
  6. 1 -0.856240 1.857977
  7. In [304]: print(df.to_html()) # raw html
  8. <table border="1" class="dataframe">
  9. <thead>
  10. <tr style="text-align: right;">
  11. <th></th>
  12. <th>0</th>
  13. <th>1</th>
  14. </tr>
  15. </thead>
  16. <tbody>
  17. <tr>
  18. <th>0</th>
  19. <td>-0.184744</td>
  20. <td>0.496971</td>
  21. </tr>
  22. <tr>
  23. <th>1</th>
  24. <td>-0.856240</td>
  25. <td>1.857977</td>
  26. </tr>
  27. </tbody>
  28. </table>

columns参数将限制列的显示:

  1. In [305]: print(df.to_html(columns=[0]))
  2. <table border="1" class="dataframe">
  3. <thead>
  4. <tr style="text-align: right;">
  5. <th></th>
  6. <th>0</th>
  7. </tr>
  8. </thead>
  9. <tbody>
  10. <tr>
  11. <th>0</th>
  12. <td>-0.184744</td>
  13. </tr>
  14. <tr>
  15. <th>1</th>
  16. <td>-0.856240</td>
  17. </tr>
  18. </tbody>
  19. </table>

HTML:

- 0
0 -0.184744
1 -0.856240

float_format采用可调用的 Python来控制浮点值的精确度:

  1. In [306]: print(df.to_html(float_format='{0:.10f}'.format))
  2. <table border="1" class="dataframe">
  3. <thead>
  4. <tr style="text-align: right;">
  5. <th></th>
  6. <th>0</th>
  7. <th>1</th>
  8. </tr>
  9. </thead>
  10. <tbody>
  11. <tr>
  12. <th>0</th>
  13. <td>-0.1847438576</td>
  14. <td>0.4969711327</td>
  15. </tr>
  16. <tr>
  17. <th>1</th>
  18. <td>-0.8562396763</td>
  19. <td>1.8579766508</td>
  20. </tr>
  21. </tbody>
  22. </table>

HTML:

- 0 1
0 -0.1847438576 0.4969711327
1 -0.8562396763 1.8579766508

默认情况下,bold_rows可以加粗行标签,但是你可以关掉它:

  1. In [307]: print(df.to_html(bold_rows=False))
  2. <table border="1" class="dataframe">
  3. <thead>
  4. <tr style="text-align: right;">
  5. <th></th>
  6. <th>0</th>
  7. <th>1</th>
  8. </tr>
  9. </thead>
  10. <tbody>
  11. <tr>
  12. <td>0</td>
  13. <td>-0.184744</td>
  14. <td>0.496971</td>
  15. </tr>
  16. <tr>
  17. <td>1</td>
  18. <td>-0.856240</td>
  19. <td>1.857977</td>
  20. </tr>
  21. </tbody>
  22. </table>
- 0 1
0 -0.184744 0.496971
1 -0.856240 1.857977

classes参数提供了能生成HTML表的CSS类的功能。注意这些类是已添加到现有的'dataframe'类中的。

  1. In [308]: print(df.to_html(classes=['awesome_table_class', 'even_more_awesome_class']))
  2. <table border="1" class="dataframe awesome_table_class even_more_awesome_class">
  3. <thead>
  4. <tr style="text-align: right;">
  5. <th></th>
  6. <th>0</th>
  7. <th>1</th>
  8. </tr>
  9. </thead>
  10. <tbody>
  11. <tr>
  12. <th>0</th>
  13. <td>-0.184744</td>
  14. <td>0.496971</td>
  15. </tr>
  16. <tr>
  17. <th>1</th>
  18. <td>-0.856240</td>
  19. <td>1.857977</td>
  20. </tr>
  21. </tbody>
  22. </table>

render_links参数提供了向包含URL的单元格添加超链接的功能。

New in version 0.24.

  1. In [309]: url_df = pd.DataFrame({
  2. .....: 'name': ['Python', 'Pandas'],
  3. .....: 'url': ['https://www.python.org/', 'http://pandas.pydata.org']})
  4. .....:
  5. In [310]: print(url_df.to_html(render_links=True))
  6. <table border="1" class="dataframe">
  7. <thead>
  8. <tr style="text-align: right;">
  9. <th></th>
  10. <th>name</th>
  11. <th>url</th>
  12. </tr>
  13. </thead>
  14. <tbody>
  15. <tr>
  16. <th>0</th>
  17. <td>Python</td>
  18. <td><a href="https://www.python.org/" target="_blank">https://www.python.org/</a></td>
  19. </tr>
  20. <tr>
  21. <th>1</th>
  22. <td>Pandas</td>
  23. <td><a href="http://pandas.pydata.org" target="_blank">http://pandas.pydata.org</a></td>
  24. </tr>
  25. </tbody>
  26. </table>

HTML:

- name url
0 Python https://www.python.org/
1 Pandas http://pandas.pydata.org

最后,escape参数允许你控制是否对生成的 HTML字符“<”, “>”和 “&”进行转义(默认是True)。因此,获取不转义的HTML字符就设置为escape=False

  1. In [311]: df = pd.DataFrame({'a': list('&<>'), 'b': np.random.randn(3)})

转义的:

  1. In [312]: print(df.to_html())
  2. <table border="1" class="dataframe">
  3. <thead>
  4. <tr style="text-align: right;">
  5. <th></th>
  6. <th>a</th>
  7. <th>b</th>
  8. </tr>
  9. </thead>
  10. <tbody>
  11. <tr>
  12. <th>0</th>
  13. <td>&amp;</td>
  14. <td>-0.474063</td>
  15. </tr>
  16. <tr>
  17. <th>1</th>
  18. <td>&lt;</td>
  19. <td>-0.230305</td>
  20. </tr>
  21. <tr>
  22. <th>2</th>
  23. <td>&gt;</td>
  24. <td>-0.400654</td>
  25. </tr>
  26. </tbody>
  27. </table>
- a b
0 & -0.474063
1 < -0.230305
2 > -0.400654

不转义的:

  1. In [313]: print(df.to_html(escape=False))
  2. <table border="1" class="dataframe">
  3. <thead>
  4. <tr style="text-align: right;">
  5. <th></th>
  6. <th>a</th>
  7. <th>b</th>
  8. </tr>
  9. </thead>
  10. <tbody>
  11. <tr>
  12. <th>0</th>
  13. <td>&</td>
  14. <td>-0.474063</td>
  15. </tr>
  16. <tr>
  17. <th>1</th>
  18. <td><</td>
  19. <td>-0.230305</td>
  20. </tr>
  21. <tr>
  22. <th>2</th>
  23. <td>></td>
  24. <td>-0.400654</td>
  25. </tr>
  26. </tbody>
  27. </table>
- a b
0 & -0.474063
1 < -0.230305
2 > -0.400654

::: tip 注意:

一些浏览器在渲染上面的两个HTML表格的时候可能看不出区别。

:::

HTML表格解析陷阱

在使用顶级的pandas io函数read_html来解析HTML表格的时候,围绕这些库,存在一些版本的问题。

lxml问题:

  • 优点:

    • lxml 是非常快的。
    • lxml要求Cython正确安装。
  • 缺点:

    • lxml 不能保证它的解析结果除非使用严格有效地标记
    • 鉴于上述情况,我们选择允许用户使用 lxml 作为后端,但是如果 lxml 解析失败,这个后端将使用html5lib
    • 因此,强烈推荐你安装BeautifulSoup4html5lib这两个库。这样即使lxml解析失败,你仍然能够得到一个有效的结果(前提是其他所有内容都有效)。

BeautifulSoup4使用lxml作为后端的问题

  • 以上问题仍然会存在因为BeautifulSoup4本质上是一个围绕后端解析的包装器。

BeautifulSoup4使用html5lib作为后端的问题

  • 优点:

    • html5liblxml宽容得多,所以会以一种更理智的方式处理现实生活中的标记,而不是仅仅,比如在未通知你的情况下删除元素。
    • html5lib能自动从无效标记中生成有效的 HTML5 标记。这在解析HTML表格的时候是相当重要的,因为它保证了它是有效的文件。然而这不意味着它是“正确的“,因为修复标记的过程没有一个定义。
    • html5lib是纯净的Python,除了它自己的安装步骤没有其他的步骤。
  • 缺点:

    • 使用html5lib最大的缺点就是太慢了。但是考虑到网络上许多表格并不足以如解析算法运行时的那么重要,它更可能像是正在通过网络上的URL读取原始文本过程中的瓶颈。例如当IO(输入-输出) 时,对于非常大的表,事实可能并非如此。

Excel 文件

read_excel()方法使用Python的xlrd模块来读取Excel 2003(.xls)版的文件,而Excel 2007+ (.xlsx)版本的是用xlrd或者openpyxl模块来读取的。to_excel()方法则是用来把DataFrame数据存储为Excel格式。一般来说,它的语法同使用csv数据是类似的,更多高级的用法可以参考cookbook

读取 Excel 文件

在大多数基本的使用案例中,read_excel会读取Excel文件通过一个路径,并且sheet_name会表明需要解析哪一张表格。

  1. # Returns a DataFrame
  2. pd.read_excel('path_to_file.xls', sheet_name='Sheet1')

ExcelFile

为了更方便地读取同一个文件的多张表格,ExcelFile类可用来打包文件并传递给read_excel。因为仅需读取一次内存,所以这种方式读取一个文件的多张表格会有性能上的优势。

  1. xlsx = pd.ExcelFile('path_to_file.xls')
  2. df = pd.read_excel(xlsx, 'Sheet1')

ExcelFile类也能用来作为上下文管理器。

  1. with pd.ExcelFile('path_to_file.xls') as xls:
  2. df1 = pd.read_excel(xls, 'Sheet1')
  3. df2 = pd.read_excel(xls, 'Sheet2')

sheet_names属性能将文件中的所有表格名字生成一组列表。

ExcelFile一个主要的用法就是用来解析多张表格的不同参数:

  1. data = {}
  2. # For when Sheet1's format differs from Sheet2
  3. with pd.ExcelFile('path_to_file.xls') as xls:
  4. data['Sheet1'] = pd.read_excel(xls, 'Sheet1', index_col=None,
  5. na_values=['NA'])
  6. data['Sheet2'] = pd.read_excel(xls, 'Sheet2', index_col=1)

注意如果所有的表格解析同一个参数,那么这组表格名的列表能轻易地传递给read_excel且不会有性能上地损失。

  1. # using the ExcelFile class
  2. data = {}
  3. with pd.ExcelFile('path_to_file.xls') as xls:
  4. data['Sheet1'] = pd.read_excel(xls, 'Sheet1', index_col=None,
  5. na_values=['NA'])
  6. data['Sheet2'] = pd.read_excel(xls, 'Sheet2', index_col=None,
  7. na_values=['NA'])
  8. # equivalent using the read_excel function
  9. data = pd.read_excel('path_to_file.xls', ['Sheet1', 'Sheet2'],
  10. index_col=None, na_values=['NA'])

ExcelFile也能同xlrd.book.Book对象作为一个参数被调用。这种方法让用户可以控制Excel文件被如何读取。例如,表格可以根据需求加载通过调用xlrd.open_workbook()伴随on_demand=True

  1. import xlrd
  2. xlrd_book = xlrd.open_workbook('path_to_file.xls', on_demand=True)
  3. with pd.ExcelFile(xlrd_book) as xls:
  4. df1 = pd.read_excel(xls, 'Sheet1')
  5. df2 = pd.read_excel(xls, 'Sheet2')

指定表格

::: tip 注意

第二个参数是sheet_name,不要同ExcelFile.sheet_names搞混淆。

:::

::: tip 注意

ExcelFile’s的属性sheet_names提供的是多张表格所生成的列表。

:::

  • sheet_name参数允许指定单张表格或多张表格被读取。

  • sheet_name的默认值是0,这表明读取的是第一张表格。

  • 在工作簿里面,使用字符串指向特定的表格名称。

  • 使用整数指向表格的索引,索引遵守Python的约定是从0开始的。

  • 无论是使用一组字符串还是整数的列表,返回的都是指定表格的字典。

  • 使用None值则会返回所有可用表格的一组字典。

  1. # Returns a DataFrame
  2. pd.read_excel('path_to_file.xls', 'Sheet1', index_col=None, na_values=['NA'])

使用表格索引:

  1. # Returns a DataFrame
  2. pd.read_excel('path_to_file.xls', 0, index_col=None, na_values=['NA'])

使用所有默认值:

  1. # Returns a DataFrame
  2. pd.read_excel('path_to_file.xls')

使用None获取所有表格:

  1. # Returns a dictionary of DataFrames
  2. pd.read_excel('path_to_file.xls', sheet_name=None)

使用列表获取多张表格:

  1. # Returns the 1st and 4th sheet, as a dictionary of DataFrames.
  2. pd.read_excel('path_to_file.xls', sheet_name=['Sheet1', 3])

read_excel能读取不止一张表格,通过sheet_name能设置为读取表格名称的列表,表格位置的列表,还能设置为None来读取所有表格。多张表格能通过表格索引或表格名称分别使用整数或字符串来指定读取。

MultiIndex读取

read_excel能用MultiIndex读取多个索引,通过index_col方法来传递列的列表和header将行的列表传递给MultiIndex的列。无论是index还是columns,如果已经具有序列化的层级名称,则可以通过指定组成层级的行/列来读取它们。

例如,用MultiIndex读取没有名称的索引:

  1. In [314]: df = pd.DataFrame({'a': [1, 2, 3, 4], 'b': [5, 6, 7, 8]},
  2. .....: index=pd.MultiIndex.from_product([['a', 'b'], ['c', 'd']]))
  3. .....:
  4. In [315]: df.to_excel('path_to_file.xlsx')
  5. In [316]: df = pd.read_excel('path_to_file.xlsx', index_col=[0, 1])
  6. In [317]: df
  7. Out[317]:
  8. a b
  9. a c 1 5
  10. d 2 6
  11. b c 3 7
  12. d 4 8

如果索引具有层级名称,它们将使用相同的参数进行解析:

  1. In [318]: df.index = df.index.set_names(['lvl1', 'lvl2'])
  2. In [319]: df.to_excel('path_to_file.xlsx')
  3. In [320]: df = pd.read_excel('path_to_file.xlsx', index_col=[0, 1])
  4. In [321]: df
  5. Out[321]:
  6. a b
  7. lvl1 lvl2
  8. a c 1 5
  9. d 2 6
  10. b c 3 7
  11. d 4 8

如果源文件具有MultiIndex索引和多列,那么可以使用index_colheader指定列表的每个值。

  1. In [322]: df.columns = pd.MultiIndex.from_product([['a'], ['b', 'd']],
  2. .....: names=['c1', 'c2'])
  3. .....:
  4. In [323]: df.to_excel('path_to_file.xlsx')
  5. In [324]: df = pd.read_excel('path_to_file.xlsx', index_col=[0, 1], header=[0, 1])
  6. In [325]: df
  7. Out[325]:
  8. c1 a
  9. c2 b d
  10. lvl1 lvl2
  11. a c 1 5
  12. d 2 6
  13. b c 3 7
  14. d 4 8

解析特定的列

常常会有这样的情况,当用户想要插入几列数据到Excel表格里面作为临时计算,但是你又不想要读取这些列的时候,read_excel提供的usecols方法就派上用场了,它让你可以解析指定的列。

Deprecated since version 0.24.0.

不推荐usecols方法使用单个整数值,请在usecols中使用包括从0开始的整数列表。

如果usecols是一个整数,那么它将被认为是暗示解析最后一列。

  1. pd.read_excel('path_to_file.xls', 'Sheet1', usecols=2)

你也可以将逗号分隔的一组Excel列和范围指定为字符串:

  1. pd.read_excel('path_to_file.xls', 'Sheet1', usecols='A,C:E')

如果usecols是一组整数列,那么将认为是解析的文件列索引。

  1. pd.read_excel('path_to_file.xls', 'Sheet1', usecols=[0, 2, 3])

元素的顺序是可以忽略的,因此usecols=[0, 1]是等价于[1, 0]的。

New in version 0.24.

如果usecols是字符串列表,那么可以认为每个字符串对应的就是表格的每一个列名,列名是由name中的用户提供或从文档标题行推断出来。这些字符串定义了那些列将要被解析:

  1. pd.read_excel('path_to_file.xls', 'Sheet1', usecols=['foo', 'bar'])

元素的顺序同样被忽略,因此usecols=['baz', 'joe']等同于['joe', 'baz']

New in version 0.24.

如果usecols是可调用的,那么该调用函数将会根据列名来调用,也会返回根据可调用函数为True的列名。

  1. pd.read_excel('path_to_file.xls', 'Sheet1', usecols=lambda x: x.isalpha())

解析日期

当读取excel文件的时候,像日期时间的值通常会自动转换为恰当的dtype(数据类型)。但是如果你有一列字符串看起来很像日期(实际上并不是excel里面的日期格式),那么你就能使用parse_dates方法来解析这些字符串为日期:

  1. pd.read_excel('path_to_file.xls', 'Sheet1', parse_dates=['date_strings'])

单元格转换

Excel里面的单元格内容是可以通过converters方法来进行转换的。例如,把一列转换为布尔值:

  1. pd.read_excel('path_to_file.xls', 'Sheet1', converters={'MyBools': bool})

这个方法可以处理缺失值并且能对缺失的数据进行如期的转换。由于转换是在单元格之间发生而不是整列,因此不能保证dtype为数组。例如一列含有缺失值的整数是不能转换为具有整数dtype的数组,因为NaN严格的被认为是浮点数。你能够手动地标记缺失数据为恢复整数dtype:

  1. def cfun(x):
  2. return int(x) if x else -1
  3. pd.read_excel('path_to_file.xls', 'Sheet1', converters={'MyInts': cfun})

数据类型规范

New in version 0.20.

作为另一个种转换器,使用dtype能指定整列地类型,它能让字典映射列名为数据类型。使用strobject来转译不能判断类型的数据:

  1. pd.read_excel('path_to_file.xls', dtype={'MyInts': 'int64', 'MyText': str})

写入Excel文件

写入Excel文件到磁盘

你可以使用to_excel方法把DataFrame对象写入到Excel文件的一张表格中。它的参数大部分同前面to_csv提到的相同,第一个参数是excel文件的名字,而可选的第二个参数是DataFrame应该写入的表格名称,例如:

  1. df.to_excel('path_to_file.xlsx', sheet_name='Sheet1')

文件以.xls 结尾的将用xlwt写入,而那些以.xlsx结尾的则使用xlsxwriter(如果可用的话)或openpyxl来写入。

DataFrame将尝试以模拟REPL(“读取-求值-输出” 循环的简写)输出的方式写入。index_label将代替第一行放置到第二行,你也能放置它到第一行通过在to_excel()里设置merge_cells选项为False:

  1. df.to_excel('path_to_file.xlsx', index_label='label', merge_cells=False)

为了把DataFrames数据分开写入Excel文件的不同表格中,可以使用ExcelWriter方法。

  1. with pd.ExcelWriter('path_to_file.xlsx') as writer:
  2. df1.to_excel(writer, sheet_name='Sheet1')
  3. df2.to_excel(writer, sheet_name='Sheet2')

::: tip 注意

为了从read_excel内部获取更多点的性能,Excel存储所有数值型数据为浮点数。但这会产生意外的情况当读取数据的时候,如果没有损失信息的话(1.0 --> 1),pandas默认的转换整数为浮点数。你可以通过convert_float=False禁止这种行为,这可能会在性能上有轻微的优化。

:::

写入Excel文件到内存

Pandas支持写入Excel文件到类缓存区对象如StringIOBytesIO,使用ExcelWriter方法。

  1. # Safe import for either Python 2.x or 3.x
  2. try:
  3. from io import BytesIO
  4. except ImportError:
  5. from cStringIO import StringIO as BytesIO
  6. bio = BytesIO()
  7. # By setting the 'engine' in the ExcelWriter constructor.
  8. writer = pd.ExcelWriter(bio, engine='xlsxwriter')
  9. df.to_excel(writer, sheet_name='Sheet1')
  10. # Save the workbook
  11. writer.save()
  12. # Seek to the beginning and read to copy the workbook to a variable in memory
  13. bio.seek(0)
  14. workbook = bio.read()

::: tip 注意

虽然engine是可选方法,但是推荐使用。设置engine决定了工作簿生成的版本。设置engine='xlrd'将生成 Excel 2003版的工作簿(xls)。而使用'openpyxl''xlsxwriter'将生成Excel 2007版的工作簿(xlsx)。如果省略,将直接生成Excel 2007版的。

:::

Excel写入引擎

Pandas选择Excel写入有两种方式:

  1. 使用engine参数
  2. 文件名的扩展(通过默认的配置方式指定)

默认的,pandas使用 XlsxWriter.xlsx,使用openpyxl.xlsm,并且使用xlwt.xls文件。如果你安装了多个引擎,你可以通过setting the config optionsio.excel.xlsx.writerio.excel.xls.writer方法设置默认引擎。如果 XlsxWriter不可用,pandas将回退使用openpyxlxlsx文件。

为了指定你想要使用的写入方式,你可以设置引擎的主要参数为to_excelExcelWriter。内置引擎是:

  • openpyxl: 要求2.4或者更高的版本。
  • xlsxwriter
  • xlwt
  1. # By setting the 'engine' in the DataFrame 'to_excel()' methods.
  2. df.to_excel('path_to_file.xlsx', sheet_name='Sheet1', engine='xlsxwriter')
  3. # By setting the 'engine' in the ExcelWriter constructor.
  4. writer = pd.ExcelWriter('path_to_file.xlsx', engine='xlsxwriter')
  5. # Or via pandas configuration.
  6. from pandas import options # noqa: E402
  7. options.io.excel.xlsx.writer = 'xlsxwriter'
  8. df.to_excel('path_to_file.xlsx', sheet_name='Sheet1')

样式

通过pandas产生的Excel工作表的样式可以使用DataFrameto_excel方法的以下参数进行修改。

  • float_format:格式化字符串用于浮点数(默认是None)。
  • freeze_panes:两个整数的元组,表示要固化的最底行和最右列。这些参数中的每个都是以1为底,因此(1, 1)将固化第一行和第一列(默认是None)。

使用 XlsxWriter引擎提供的多种方法来修改用to_excel方法创建的Excel工作表的样式。你能在 XlsxWriter文档里面找到绝佳的例子:https://xlsxwriter.readthedocs.io/working_with_pandas.html

OpenDocument 电子表格

New in version 0.25.

read_excel方法也能使用odfpy模块来读取OpenDocument电子表格。读取OpenDocument电子表格的语法和方法同使用engine='odf'来操作Excel files的方法类似。

  1. # Returns a DataFrame
  2. pd.read_excel('path_to_file.ods', engine='odf')

::: tip 注意

目前pandas仅支持读取OpenDocument电子表格,写入是不行的。

:::

剪贴板

使用read_clipboard()方法是一种便捷的获取数据的方式,通过把剪贴的内容暂存,然后传递给read_csv方法。例如,你可以复制以下文本来剪贴(在许多操作系统上是CTRL-C):

  1. A B C
  2. x 1 4 p
  3. y 2 5 q
  4. z 3 6 r

接着直接使用DataFrame来导入数据:

  1. >>> clipdf = pd.read_clipboard()
  2. >>> clipdf
  3. A B C
  4. x 1 4 p
  5. y 2 5 q
  6. z 3 6 r

to_clipboard方法可以把DataFrame内容写入到剪贴板。使用下面的方法你可以粘贴剪贴板的内容到其他应用(在许多系统中用的是CTRL-V)。这里我们解释一下如何使用DataFrame把内容写入到剪贴板并读回。

  1. >>> df = pd.DataFrame({'A': [1, 2, 3],
  2. ... 'B': [4, 5, 6],
  3. ... 'C': ['p', 'q', 'r']},
  4. ... index=['x', 'y', 'z'])
  5. >>> df
  6. A B C
  7. x 1 4 p
  8. y 2 5 q
  9. z 3 6 r
  10. >>> df.to_clipboard()
  11. >>> pd.read_clipboard()
  12. A B C
  13. x 1 4 p
  14. y 2 5 q
  15. z 3 6 r

我们可以看到返回了同样的内容,那就是我们早先写入剪贴板的内容。

::: tip 注意

要使用上面的这些方法,你可能需要在Linux上面安装(带有PyQt5, PyQt4 or qtpy)的xclip或者xsel 。

:::

序列化(Pickling)

所有的pandas对象都具有to_pickle方法,该方法使用Python的cPickle模块以序列化格式存储数据结构到磁盘上。

  1. In [326]: df
  2. Out[326]:
  3. c1 a
  4. c2 b d
  5. lvl1 lvl2
  6. a c 1 5
  7. d 2 6
  8. b c 3 7
  9. d 4 8
  10. In [327]: df.to_pickle('foo.pkl')

pandas中命名的read_pickle函数能够从文件中加载任意序列化的pandas对象(或者任何其他的序列化对象):

  1. In [328]: pd.read_pickle('foo.pkl')
  2. Out[328]:
  3. c1 a
  4. c2 b d
  5. lvl1 lvl2
  6. a c 1 5
  7. d 2 6
  8. b c 3 7
  9. d 4 8

::: danger 警告

加载来自不信任来源的序列化数据是不安全的。 参见:https://docs.python.org/3/library/pickle.html

:::

::: danger 警告

read_pickle()仅在pandas的0.20.3版本及以下版本兼容。

:::

压缩序列化文件

New in version 0.20.0.

read_pickle()DataFrame.to_pickle()Series.to_pickle()能够读取和写入压缩的序列化文件。读取和写入所支持的压缩文件类型有gzip, bz2, xzzip文件格式仅支持读取,并且必须仅包含一个要读取的数据文件。

压缩类型可以是显式参数,也可以从文件扩展名中推断出来。如果文件名是以'.gz''.bz2''.zip', 或者'.xz'结尾的,那么可以推断出应分别使用gzipbz2zip,或 xz压缩类型。

  1. In [329]: df = pd.DataFrame({
  2. .....: 'A': np.random.randn(1000),
  3. .....: 'B': 'foo',
  4. .....: 'C': pd.date_range('20130101', periods=1000, freq='s')})
  5. .....:
  6. In [330]: df
  7. Out[330]:
  8. A B C
  9. 0 -0.288267 foo 2013-01-01 00:00:00
  10. 1 -0.084905 foo 2013-01-01 00:00:01
  11. 2 0.004772 foo 2013-01-01 00:00:02
  12. 3 1.382989 foo 2013-01-01 00:00:03
  13. 4 0.343635 foo 2013-01-01 00:00:04
  14. .. ... ... ...
  15. 995 -0.220893 foo 2013-01-01 00:16:35
  16. 996 0.492996 foo 2013-01-01 00:16:36
  17. 997 -0.461625 foo 2013-01-01 00:16:37
  18. 998 1.361779 foo 2013-01-01 00:16:38
  19. 999 -1.197988 foo 2013-01-01 00:16:39
  20. [1000 rows x 3 columns]

使用显式压缩类型:

  1. In [331]: df.to_pickle("data.pkl.compress", compression="gzip")
  2. In [332]: rt = pd.read_pickle("data.pkl.compress", compression="gzip")
  3. In [333]: rt
  4. Out[333]:
  5. A B C
  6. 0 -0.288267 foo 2013-01-01 00:00:00
  7. 1 -0.084905 foo 2013-01-01 00:00:01
  8. 2 0.004772 foo 2013-01-01 00:00:02
  9. 3 1.382989 foo 2013-01-01 00:00:03
  10. 4 0.343635 foo 2013-01-01 00:00:04
  11. .. ... ... ...
  12. 995 -0.220893 foo 2013-01-01 00:16:35
  13. 996 0.492996 foo 2013-01-01 00:16:36
  14. 997 -0.461625 foo 2013-01-01 00:16:37
  15. 998 1.361779 foo 2013-01-01 00:16:38
  16. 999 -1.197988 foo 2013-01-01 00:16:39
  17. [1000 rows x 3 columns]

从扩展名推断压缩类型:

  1. In [334]: df.to_pickle("data.pkl.xz", compression="infer")
  2. In [335]: rt = pd.read_pickle("data.pkl.xz", compression="infer")
  3. In [336]: rt
  4. Out[336]:
  5. A B C
  6. 0 -0.288267 foo 2013-01-01 00:00:00
  7. 1 -0.084905 foo 2013-01-01 00:00:01
  8. 2 0.004772 foo 2013-01-01 00:00:02
  9. 3 1.382989 foo 2013-01-01 00:00:03
  10. 4 0.343635 foo 2013-01-01 00:00:04
  11. .. ... ... ...
  12. 995 -0.220893 foo 2013-01-01 00:16:35
  13. 996 0.492996 foo 2013-01-01 00:16:36
  14. 997 -0.461625 foo 2013-01-01 00:16:37
  15. 998 1.361779 foo 2013-01-01 00:16:38
  16. 999 -1.197988 foo 2013-01-01 00:16:39
  17. [1000 rows x 3 columns]

默认是使用“推断”:

  1. In [337]: df.to_pickle("data.pkl.gz")
  2. In [338]: rt = pd.read_pickle("data.pkl.gz")
  3. In [339]: rt
  4. Out[339]:
  5. A B C
  6. 0 -0.288267 foo 2013-01-01 00:00:00
  7. 1 -0.084905 foo 2013-01-01 00:00:01
  8. 2 0.004772 foo 2013-01-01 00:00:02
  9. 3 1.382989 foo 2013-01-01 00:00:03
  10. 4 0.343635 foo 2013-01-01 00:00:04
  11. .. ... ... ...
  12. 995 -0.220893 foo 2013-01-01 00:16:35
  13. 996 0.492996 foo 2013-01-01 00:16:36
  14. 997 -0.461625 foo 2013-01-01 00:16:37
  15. 998 1.361779 foo 2013-01-01 00:16:38
  16. 999 -1.197988 foo 2013-01-01 00:16:39
  17. [1000 rows x 3 columns]
  18. In [340]: df["A"].to_pickle("s1.pkl.bz2")
  19. In [341]: rt = pd.read_pickle("s1.pkl.bz2")
  20. In [342]: rt
  21. Out[342]:
  22. 0 -0.288267
  23. 1 -0.084905
  24. 2 0.004772
  25. 3 1.382989
  26. 4 0.343635
  27. ...
  28. 995 -0.220893
  29. 996 0.492996
  30. 997 -0.461625
  31. 998 1.361779
  32. 999 -1.197988
  33. Name: A, Length: 1000, dtype: float64

msgpack(一种二进制格式)

pandas支持msgpack格式的对象序列化。他是一种轻量级可移植的二进制格式,同二进制的JSON类似,具有高效的空间利用率以及不错的写入(序列化)和读取(反序列化)性能。

::: danger 警告

从0.25版本开始,不推荐使用msgpack格式,并且之后的版本也将删除它。推荐使用pyarrow对pandas对象进行在线的转换。

:::

::: danger 警告

read_msgpack()仅在pandas的0.20.3版本及以下版本兼容。

:::

  1. In [343]: df = pd.DataFrame(np.random.rand(5, 2), columns=list('AB'))
  2. In [344]: df.to_msgpack('foo.msg')
  3. In [345]: pd.read_msgpack('foo.msg')
  4. Out[345]:
  5. A B
  6. 0 0.275432 0.293583
  7. 1 0.842639 0.165381
  8. 2 0.608925 0.778891
  9. 3 0.136543 0.029703
  10. 4 0.318083 0.604870
  11. In [346]: s = pd.Series(np.random.rand(5), index=pd.date_range('20130101', periods=5))

你可以传递一组对象列表并得到反序列化的结果。

  1. In [347]: pd.to_msgpack('foo.msg', df, 'foo', np.array([1, 2, 3]), s)
  2. In [348]: pd.read_msgpack('foo.msg')
  3. Out[348]:
  4. [ A B
  5. 0 0.275432 0.293583
  6. 1 0.842639 0.165381
  7. 2 0.608925 0.778891
  8. 3 0.136543 0.029703
  9. 4 0.318083 0.604870, 'foo', array([1, 2, 3]), 2013-01-01 0.330824
  10. 2013-01-02 0.790825
  11. 2013-01-03 0.308468
  12. 2013-01-04 0.092397
  13. 2013-01-05 0.703091
  14. Freq: D, dtype: float64]

你能传递iterator=True参数来迭代解压后的结果:

  1. In [349]: for o in pd.read_msgpack('foo.msg', iterator=True):
  2. .....: print(o)
  3. .....:
  4. A B
  5. 0 0.275432 0.293583
  6. 1 0.842639 0.165381
  7. 2 0.608925 0.778891
  8. 3 0.136543 0.029703
  9. 4 0.318083 0.604870
  10. foo
  11. [1 2 3]
  12. 2013-01-01 0.330824
  13. 2013-01-02 0.790825
  14. 2013-01-03 0.308468
  15. 2013-01-04 0.092397
  16. 2013-01-05 0.703091
  17. Freq: D, dtype: float64

你也能传递append=True参数,给现有的包添加写入:

  1. In [350]: df.to_msgpack('foo.msg', append=True)
  2. In [351]: pd.read_msgpack('foo.msg')
  3. Out[351]:
  4. [ A B
  5. 0 0.275432 0.293583
  6. 1 0.842639 0.165381
  7. 2 0.608925 0.778891
  8. 3 0.136543 0.029703
  9. 4 0.318083 0.604870, 'foo', array([1, 2, 3]), 2013-01-01 0.330824
  10. 2013-01-02 0.790825
  11. 2013-01-03 0.308468
  12. 2013-01-04 0.092397
  13. 2013-01-05 0.703091
  14. Freq: D, dtype: float64, A B
  15. 0 0.275432 0.293583
  16. 1 0.842639 0.165381
  17. 2 0.608925 0.778891
  18. 3 0.136543 0.029703
  19. 4 0.318083 0.604870]

不像其他io方法,to_msgpack既可以基于每个对象使用df.to_msgpack()方法,也可以在混合pandas对象的时候使用顶层pd.to_msgpack(...)方法,该方法可以让你打包任意的Python列表、字典、标量的集合。

  1. In [352]: pd.to_msgpack('foo2.msg', {'dict': [{'df': df}, {'string': 'foo'},
  2. .....: {'scalar': 1.}, {'s': s}]})
  3. .....:
  4. In [353]: pd.read_msgpack('foo2.msg')
  5. Out[353]:
  6. {'dict': ({'df': A B
  7. 0 0.275432 0.293583
  8. 1 0.842639 0.165381
  9. 2 0.608925 0.778891
  10. 3 0.136543 0.029703
  11. 4 0.318083 0.604870},
  12. {'string': 'foo'},
  13. {'scalar': 1.0},
  14. {'s': 2013-01-01 0.330824
  15. 2013-01-02 0.790825
  16. 2013-01-03 0.308468
  17. 2013-01-04 0.092397
  18. 2013-01-05 0.703091
  19. Freq: D, dtype: float64})}

读/写API

Msgpacks也能读写字符串。

  1. In [354]: df.to_msgpack()
  2. Out[354]: b'\x84\xa3typ\xadblock_manager\xa5klass\xa9DataFrame\xa4axes\x92\x86\xa3typ\xa5index\xa5klass\xa5Index\xa4name\xc0\xa5dtype\xa6object\xa4data\x92\xa1A\xa1B\xa8compress\xc0\x86\xa3typ\xabrange_index\xa5klass\xaaRangeIndex\xa4name\xc0\xa5start\x00\xa4stop\x05\xa4step\x01\xa6blocks\x91\x86\xa4locs\x86\xa3typ\xa7ndarray\xa5shape\x91\x02\xa4ndim\x01\xa5dtype\xa5int64\xa4data\xd8\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xa8compress\xc0\xa6values\xc7P\x00\xc84 \x84\xac\xa0\xd1?\x0f\xa4.\xb5\xe6\xf6\xea?\xb9\x85\x9aLO|\xe3?\xac\xf0\xd7\x81>z\xc1?\\\xca\x97\ty[\xd4?\x9c\x9b\x8a:\x11\xca\xd2?\x14zX\xd01+\xc5?4=\x19b\xad\xec\xe8?\xc0!\xe9\xf4\x8ej\x9e?\xa7>_\xac\x17[\xe3?\xa5shape\x92\x02\x05\xa5dtype\xa7float64\xa5klass\xaaFloatBlock\xa8compress\xc0'

此外你可以连接字符串生成一个原始的对象列表。

  1. In [355]: pd.read_msgpack(df.to_msgpack() + s.to_msgpack())
  2. Out[355]:
  3. [ A B
  4. 0 0.275432 0.293583
  5. 1 0.842639 0.165381
  6. 2 0.608925 0.778891
  7. 3 0.136543 0.029703
  8. 4 0.318083 0.604870, 2013-01-01 0.330824
  9. 2013-01-02 0.790825
  10. 2013-01-03 0.308468
  11. 2013-01-04 0.092397
  12. 2013-01-05 0.703091
  13. Freq: D, dtype: float64]

HDF5(PyTables) (一种以.h5结尾的分层数据格式)

HDFStore是一个能读写pandas的类似字典的对象,它能使用高性能的HDF5格式,该格式是用优秀的PyTables库写的。一些更高级的用法参考cookbook

::: danger 警告

pandas要求使用的PyTables版本要 > = 3.0.0。当使用索引来检索存储的时候,PyTables< 3.2的版本会出现索引bug。如果返回一个结果的子集,那么你就需要升级PyTables 的版本 >= 3.2才行。先前创建的存储数据将会使用更新后的版本再次写入。

:::

  1. In [356]: store = pd.HDFStore('store.h5')
  2. In [357]: print(store)
  3. <class 'pandas.io.pytables.HDFStore'>
  4. File path: store.h5

对象能够被写入文件就像成对的键-值添加到字典里面一样:

  1. In [358]: index = pd.date_range('1/1/2000', periods=8)
  2. In [359]: s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])
  3. In [360]: df = pd.DataFrame(np.random.randn(8, 3), index=index,
  4. .....: columns=['A', 'B', 'C'])
  5. .....:
  6. # store.put('s', s) is an equivalent method
  7. In [361]: store['s'] = s
  8. In [362]: store['df'] = df
  9. In [363]: store
  10. Out[363]:
  11. <class 'pandas.io.pytables.HDFStore'>
  12. File path: store.h5

在当前或者之后的Python会话中,你都能检索存储的对象:

  1. # store.get('df') is an equivalent method
  2. In [364]: store['df']
  3. Out[364]:
  4. A B C
  5. 2000-01-01 -0.426936 -1.780784 0.322691
  6. 2000-01-02 1.638174 -2.184251 0.049673
  7. 2000-01-03 -1.022803 0.889445 2.827717
  8. 2000-01-04 1.767446 -1.305266 -0.378355
  9. 2000-01-05 0.486743 0.954551 0.859671
  10. 2000-01-06 -1.170458 -1.211386 -0.852728
  11. 2000-01-07 -0.450781 1.064650 1.014927
  12. 2000-01-08 -0.810399 0.254343 -0.875526
  13. # dotted (attribute) access provides get as well
  14. In [365]: store.df
  15. Out[365]:
  16. A B C
  17. 2000-01-01 -0.426936 -1.780784 0.322691
  18. 2000-01-02 1.638174 -2.184251 0.049673
  19. 2000-01-03 -1.022803 0.889445 2.827717
  20. 2000-01-04 1.767446 -1.305266 -0.378355
  21. 2000-01-05 0.486743 0.954551 0.859671
  22. 2000-01-06 -1.170458 -1.211386 -0.852728
  23. 2000-01-07 -0.450781 1.064650 1.014927
  24. 2000-01-08 -0.810399 0.254343 -0.875526

使用键删除指定的对象:

  1. # store.remove('df') is an equivalent method
  2. In [366]: del store['df']
  3. In [367]: store
  4. Out[367]:
  5. <class 'pandas.io.pytables.HDFStore'>
  6. File path: store.h5

关闭存储对象并使用环境管理器:

  1. In [368]: store.close()
  2. In [369]: store
  3. Out[369]:
  4. <class 'pandas.io.pytables.HDFStore'>
  5. File path: store.h5
  6. In [370]: store.is_open
  7. Out[370]: False
  8. # Working with, and automatically closing the store using a context manager
  9. In [371]: with pd.HDFStore('store.h5') as store:
  10. .....: store.keys()
  11. .....:

读/写 API

HDFStore支持顶层的API,用read_hdf来读取,和使用to_hdf来写入,类似于read_csvto_csv的用法。

  1. In [372]: df_tl = pd.DataFrame({'A': list(range(5)), 'B': list(range(5))})
  2. In [373]: df_tl.to_hdf('store_tl.h5', 'table', append=True)
  3. In [374]: pd.read_hdf('store_tl.h5', 'table', where=['index>2'])
  4. Out[374]:
  5. A B
  6. 3 3 3
  7. 4 4 4

HDFStore默认不会删除全是缺失值的行,但是通过设置dropna=True参数就能改变。

  1. In [375]: df_with_missing = pd.DataFrame({'col1': [0, np.nan, 2],
  2. .....: 'col2': [1, np.nan, np.nan]})
  3. .....:
  4. In [376]: df_with_missing
  5. Out[376]:
  6. col1 col2
  7. 0 0.0 1.0
  8. 1 NaN NaN
  9. 2 2.0 NaN
  10. In [377]: df_with_missing.to_hdf('file.h5', 'df_with_missing',
  11. .....: format='table', mode='w')
  12. .....:
  13. In [378]: pd.read_hdf('file.h5', 'df_with_missing')
  14. Out[378]:
  15. col1 col2
  16. 0 0.0 1.0
  17. 1 NaN NaN
  18. 2 2.0 NaN
  19. In [379]: df_with_missing.to_hdf('file.h5', 'df_with_missing',
  20. .....: format='table', mode='w', dropna=True)
  21. .....:
  22. In [380]: pd.read_hdf('file.h5', 'df_with_missing')
  23. Out[380]:
  24. col1 col2
  25. 0 0.0 1.0
  26. 2 2.0 NaN

固定格式

上面的例子表明了使用put进行存储的情况,该存储将HDF5以固定数组格式写入PyTables,这就是所谓的fixed格式。这些类型的存储一旦被写入后将不能再添加数据(虽然你能轻易地删除它们并再次写入),也不能查询;必须全部检索它们。它们也不支持没有唯一列名的数据表。fixed格式提供了非常快速的写入功能,并且比table存储在读取方面更快捷。默认的指定格式是使用put 或者to_hdf 亦或通过format='fixed'format='f'格式。

::: danger 警告

如果你尝试使用where来检索,fixed格式将会报错TypeError

  1. >>> pd.DataFrame(np.random.randn(10, 2)).to_hdf('test_fixed.h5', 'df')
  2. >>> pd.read_hdf('test_fixed.h5', 'df', where='index>5')
  3. TypeError: cannot pass a where specification when reading a fixed format.
  4. this store must be selected in its entirety

:::

表格格式

HDFStore支持在磁盘上使用另一种PyTables格式,即table格式。从概念上来讲,table在外形上同具有行和列的DataFrame极度相似。table也能被添加到同样的或其他的会话中。此外,删除和查询操作也是支持的。通过指定格式为format='table'format='t'append方法或put或者to_hdf

put/append/to_hdf方法中使用的格式也可以设置为可选pd.set_option('io.hdf.default_format','table'),以默认的table格式存储。

  1. In [381]: store = pd.HDFStore('store.h5')
  2. In [382]: df1 = df[0:4]
  3. In [383]: df2 = df[4:]
  4. # append data (creates a table automatically)
  5. In [384]: store.append('df', df1)
  6. In [385]: store.append('df', df2)
  7. In [386]: store
  8. Out[386]:
  9. <class 'pandas.io.pytables.HDFStore'>
  10. File path: store.h5
  11. # select the entire object
  12. In [387]: store.select('df')
  13. Out[387]:
  14. A B C
  15. 2000-01-01 -0.426936 -1.780784 0.322691
  16. 2000-01-02 1.638174 -2.184251 0.049673
  17. 2000-01-03 -1.022803 0.889445 2.827717
  18. 2000-01-04 1.767446 -1.305266 -0.378355
  19. 2000-01-05 0.486743 0.954551 0.859671
  20. 2000-01-06 -1.170458 -1.211386 -0.852728
  21. 2000-01-07 -0.450781 1.064650 1.014927
  22. 2000-01-08 -0.810399 0.254343 -0.875526
  23. # the type of stored data
  24. In [388]: store.root.df._v_attrs.pandas_type
  25. Out[388]: 'frame_table'

::: tip 注意

你也可以通过创建table来传递format='table'或者format='tput操作。

:::

分层键

存储的键能够指定为字符串,这些分层的路径名就像这样的格式(例如:foo/bar/bah)。它将生成子存储的层次结构(或者在PyTables中叫做Groups )。键可以不带前面的’/‘指定而且总是单独的(例如:’foo’ 指的就是’/foo’)。删除操作能够删除所有子存储及之后的数据,所以要小心该操作。

  1. In [389]: store.put('foo/bar/bah', df)
  2. In [390]: store.append('food/orange', df)
  3. In [391]: store.append('food/apple', df)
  4. In [392]: store
  5. Out[392]:
  6. <class 'pandas.io.pytables.HDFStore'>
  7. File path: store.h5
  8. # a list of keys are returned
  9. In [393]: store.keys()
  10. Out[393]: ['/df', '/food/apple', '/food/orange', '/foo/bar/bah']
  11. # remove all nodes under this level
  12. In [394]: store.remove('food')
  13. In [395]: store
  14. Out[395]:
  15. <class 'pandas.io.pytables.HDFStore'>
  16. File path: store.h5

你能遍历组层次结构使用walk方法,该方法将为每个组键及其内容的相对键生成一个元组。

New in version 0.24.0.

  1. In [396]: for (path, subgroups, subkeys) in store.walk():
  2. .....: for subgroup in subgroups:
  3. .....: print('GROUP: {}/{}'.format(path, subgroup))
  4. .....: for subkey in subkeys:
  5. .....: key = '/'.join([path, subkey])
  6. .....: print('KEY: {}'.format(key))
  7. .....: print(store.get(key))
  8. .....:
  9. GROUP: /foo
  10. KEY: /df
  11. A B C
  12. 2000-01-01 -0.426936 -1.780784 0.322691
  13. 2000-01-02 1.638174 -2.184251 0.049673
  14. 2000-01-03 -1.022803 0.889445 2.827717
  15. 2000-01-04 1.767446 -1.305266 -0.378355
  16. 2000-01-05 0.486743 0.954551 0.859671
  17. 2000-01-06 -1.170458 -1.211386 -0.852728
  18. 2000-01-07 -0.450781 1.064650 1.014927
  19. 2000-01-08 -0.810399 0.254343 -0.875526
  20. GROUP: /foo/bar
  21. KEY: /foo/bar/bah
  22. A B C
  23. 2000-01-01 -0.426936 -1.780784 0.322691
  24. 2000-01-02 1.638174 -2.184251 0.049673
  25. 2000-01-03 -1.022803 0.889445 2.827717
  26. 2000-01-04 1.767446 -1.305266 -0.378355
  27. 2000-01-05 0.486743 0.954551 0.859671
  28. 2000-01-06 -1.170458 -1.211386 -0.852728
  29. 2000-01-07 -0.450781 1.064650 1.014927
  30. 2000-01-08 -0.810399 0.254343 -0.875526

::: danger 警告

分层键对于存储在根节点下的项目,无法使用如上的方法将其作为点(属性)进行检索。

  1. In [8]: store.foo.bar.bah
  2. AttributeError: 'HDFStore' object has no attribute 'foo'
  3. # you can directly access the actual PyTables node but using the root node
  4. In [9]: store.root.foo.bar.bah
  5. Out[9]:
  6. /foo/bar/bah (Group) ''
  7. children := ['block0_items' (Array), 'block0_values' (Array), 'axis0' (Array), 'axis1' (Array)]

相反,使用基于显式字符串的键:

  1. In [397]: store['foo/bar/bah']
  2. Out[397]:
  3. A B C
  4. 2000-01-01 -0.426936 -1.780784 0.322691
  5. 2000-01-02 1.638174 -2.184251 0.049673
  6. 2000-01-03 -1.022803 0.889445 2.827717
  7. 2000-01-04 1.767446 -1.305266 -0.378355
  8. 2000-01-05 0.486743 0.954551 0.859671
  9. 2000-01-06 -1.170458 -1.211386 -0.852728
  10. 2000-01-07 -0.450781 1.064650 1.014927
  11. 2000-01-08 -0.810399 0.254343 -0.875526

:::

存储类型

在表格中存储混合类型

支持混合数据类型存储。字符串使用添加列的最大尺寸以固定宽度进行存储。后面尝试添加更长的字符串将会报错ValueError

添加参数min_itemsize={`values`: size}将给字符串列设置一个更大的最小值。目前支持的存储类型有 floats,strings, ints, bools, datetime64 。对于字符串列,添加参数 nan_rep = 'nan'将改变磁盘上默认的nan值(转变为np.nan),原本默认是nan

  1. In [398]: df_mixed = pd.DataFrame({'A': np.random.randn(8),
  2. .....: 'B': np.random.randn(8),
  3. .....: 'C': np.array(np.random.randn(8), dtype='float32'),
  4. .....: 'string': 'string',
  5. .....: 'int': 1,
  6. .....: 'bool': True,
  7. .....: 'datetime64': pd.Timestamp('20010102')},
  8. .....: index=list(range(8)))
  9. .....:
  10. In [399]: df_mixed.loc[df_mixed.index[3:5],
  11. .....: ['A', 'B', 'string', 'datetime64']] = np.nan
  12. .....:
  13. In [400]: store.append('df_mixed', df_mixed, min_itemsize={'values': 50})
  14. In [401]: df_mixed1 = store.select('df_mixed')
  15. In [402]: df_mixed1
  16. Out[402]:
  17. A B C string int bool datetime64
  18. 0 -0.980856 0.298656 0.151508 string 1 True 2001-01-02
  19. 1 -0.906920 -1.294022 0.587939 string 1 True 2001-01-02
  20. 2 0.988185 -0.618845 0.043096 string 1 True 2001-01-02
  21. 3 NaN NaN 0.362451 NaN 1 True NaT
  22. 4 NaN NaN 1.356269 NaN 1 True NaT
  23. 5 -0.772889 -0.340872 1.798994 string 1 True 2001-01-02
  24. 6 -0.043509 -0.303900 0.567265 string 1 True 2001-01-02
  25. 7 0.768606 -0.871948 -0.044348 string 1 True 2001-01-02
  26. In [403]: df_mixed1.dtypes.value_counts()
  27. Out[403]:
  28. float64 2
  29. float32 1
  30. datetime64[ns] 1
  31. int64 1
  32. bool 1
  33. object 1
  34. dtype: int64
  35. # we have provided a minimum string column size
  36. In [404]: store.root.df_mixed.table
  37. Out[404]:
  38. /df_mixed/table (Table(8,)) ''
  39. description := {
  40. "index": Int64Col(shape=(), dflt=0, pos=0),
  41. "values_block_0": Float64Col(shape=(2,), dflt=0.0, pos=1),
  42. "values_block_1": Float32Col(shape=(1,), dflt=0.0, pos=2),
  43. "values_block_2": Int64Col(shape=(1,), dflt=0, pos=3),
  44. "values_block_3": Int64Col(shape=(1,), dflt=0, pos=4),
  45. "values_block_4": BoolCol(shape=(1,), dflt=False, pos=5),
  46. "values_block_5": StringCol(itemsize=50, shape=(1,), dflt=b'', pos=6)}
  47. byteorder := 'little'
  48. chunkshape := (689,)
  49. autoindex := True
  50. colindexes := {
  51. "index": Index(6, medium, shuffle, zlib(1)).is_csi=False}

存储多层索引数据表

存储多层索引DataFrames为表格与从同类索引 DataFrames中存储/选取是非常类似的。

  1. In [405]: index = pd.MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'],
  2. .....: ['one', 'two', 'three']],
  3. .....: codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3],
  4. .....: [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
  5. .....: names=['foo', 'bar'])
  6. .....:
  7. In [406]: df_mi = pd.DataFrame(np.random.randn(10, 3), index=index,
  8. .....: columns=['A', 'B', 'C'])
  9. .....:
  10. In [407]: df_mi
  11. Out[407]:
  12. A B C
  13. foo bar
  14. foo one 0.031885 0.641045 0.479460
  15. two -0.630652 -0.182400 -0.789979
  16. three -0.282700 -0.813404 1.252998
  17. bar one 0.758552 0.384775 -1.133177
  18. two -1.002973 -1.644393 -0.311536
  19. baz two -0.615506 -0.084551 -1.318575
  20. three 0.923929 -0.105981 0.429424
  21. qux one -1.034590 0.542245 -0.384429
  22. two 0.170697 -0.200289 1.220322
  23. three -1.001273 0.162172 0.376816
  24. In [408]: store.append('df_mi', df_mi)
  25. In [409]: store.select('df_mi')
  26. Out[409]:
  27. A B C
  28. foo bar
  29. foo one 0.031885 0.641045 0.479460
  30. two -0.630652 -0.182400 -0.789979
  31. three -0.282700 -0.813404 1.252998
  32. bar one 0.758552 0.384775 -1.133177
  33. two -1.002973 -1.644393 -0.311536
  34. baz two -0.615506 -0.084551 -1.318575
  35. three 0.923929 -0.105981 0.429424
  36. qux one -1.034590 0.542245 -0.384429
  37. two 0.170697 -0.200289 1.220322
  38. three -1.001273 0.162172 0.376816
  39. # the levels are automatically included as data columns
  40. In [410]: store.select('df_mi', 'foo=bar')
  41. Out[410]:
  42. A B C
  43. foo bar
  44. bar one 0.758552 0.384775 -1.133177
  45. two -1.002973 -1.644393 -0.311536

查询

查询表格

selectdelete 操作有一个可选项即能指定选择/删除仅有数据的子集。 这允许用户拥有一个很大的磁盘表并仅检索一部分数据。

在底层里使用Term 类指定查询为布尔表达式。

  • 支持的 DataFrames索引器有 indexcolumns .
  • 如果指定为data_columns,这些将作为额外的索引器。

有效的比较运算符有:

=, ==, !=, >, >=, <, <=

有效的布尔表达式包含如下几种:

  • | : 选择
  • & : 并列
  • () : 用来分组

这些规则同在pandas的索引中使用布尔表达式是类似的。

::: tip 注意

  • = 将自动扩展为比较运算符 ==
  • ~ 不是运算符,且只在有限的条件下使用
  • 如果传递的表达式时列表/元组,他们将通过 &符号合并

:::

以下都是有效的表达式:

  • 'index >= date'
  • "columns = ['A', 'D']"
  • "columns in ['A', 'D']"
  • 'columns = A'
  • 'columns == A'
  • "~(columns = ['A', 'B'])"
  • 'index > df.index[3] & string = "bar"'
  • '(index > df.index[3] & index <= df.index[6]) | string = "bar"'
  • "ts >= Timestamp('2012-02-01')"
  • "major_axis>=20130101"

indexers在子表达式的左边的有: columns, major_axis, ts

(在比较运算符后面)子表达式可以是:

  • 能被求值的函数,比如:Timestamp('2012-02-01')
  • 字符串,比如: "bar"
  • 类似日期,比如: 20130101或者 "20130101"
  • 列表,比如: "['A', 'B']"
  • 以本地命名空间定义的变量,比如:date

::: tip 注意

在查询表达式中插入字符串进行查询是不推荐的。如果将带有%的字符串分配给变量,然后在表达式中使用该变量。那么,这样做

  1. string = "HolyMoly'"
  2. store.select('df', 'index == string')

来代替下面这样

  1. string = "HolyMoly'"
  2. store.select('df', 'index == %s' % string)

因为后者将 不会 起作用并引起 SyntaxError。注意 string变量的双引号里面有一个单引号。

如果你一定要插入,使用说明符格式 '%r'

  1. store.select('df', 'index == %r' % string)

它将会引用变量 string.

:::

这儿有一些例子:

  1. In [411]: dfq = pd.DataFrame(np.random.randn(10, 4), columns=list('ABCD'),
  2. .....: index=pd.date_range('20130101', periods=10))
  3. .....:
  4. In [412]: store.append('dfq', dfq, format='table', data_columns=True)

使用布尔表达式同内联求值函数。

  1. In [413]: store.select('dfq', "index>pd.Timestamp('20130104') & columns=['A', 'B']")
  2. Out[413]:
  3. A B
  4. 2013-01-05 0.450263 0.755221
  5. 2013-01-06 0.019915 0.300003
  6. 2013-01-07 1.878479 -0.026513
  7. 2013-01-08 3.272320 0.077044
  8. 2013-01-09 -0.398346 0.507286
  9. 2013-01-10 0.516017 -0.501550

内联列引用

  1. In [414]: store.select('dfq', where="A>0 or C>0")
  2. Out[414]:
  3. A B C D
  4. 2013-01-01 -0.161614 -1.636805 0.835417 0.864817
  5. 2013-01-02 0.843452 -0.122918 -0.026122 -1.507533
  6. 2013-01-03 0.335303 -1.340566 -1.024989 1.125351
  7. 2013-01-05 0.450263 0.755221 -1.506656 0.808794
  8. 2013-01-06 0.019915 0.300003 -0.727093 -1.119363
  9. 2013-01-07 1.878479 -0.026513 0.573793 0.154237
  10. 2013-01-08 3.272320 0.077044 0.397034 -0.613983
  11. 2013-01-10 0.516017 -0.501550 0.138212 0.218366

关键词columns 能用来筛选列字段并返回为列表,这等价于传递'columns=list_of_columns_to_filter':

  1. In [415]: store.select('df', "columns=['A', 'B']")
  2. Out[415]:
  3. A B
  4. 2000-01-01 -0.426936 -1.780784
  5. 2000-01-02 1.638174 -2.184251
  6. 2000-01-03 -1.022803 0.889445
  7. 2000-01-04 1.767446 -1.305266
  8. 2000-01-05 0.486743 0.954551
  9. 2000-01-06 -1.170458 -1.211386
  10. 2000-01-07 -0.450781 1.064650
  11. 2000-01-08 -0.810399 0.254343

start and stop 参数能指定总的搜索范围。这些是根据表中的总行数得出来的。

::: tip 注意

如果查询表达式有未知的引用变量,那么select 将会报错 ValueError 。通常这就意味着你正在尝试选取的一列并不在当前数据列中。

如果查询表达式无效,那么select将会报错SyntaxError

:::

timedelta64[ns]的用法

你能使用timedelta64[ns]进行存储和查询。使用()来指定查询的条目,浮点数可以带符号(和小数),timedelta的单位可以是D,s,ms,us,ns。看示例:

  1. In [416]: from datetime import timedelta
  2. In [417]: dftd = pd.DataFrame({'A': pd.Timestamp('20130101'),
  3. .....: 'B': [pd.Timestamp('20130101') + timedelta(days=i,
  4. .....: seconds=10)
  5. .....: for i in range(10)]})
  6. .....:
  7. In [418]: dftd['C'] = dftd['A'] - dftd['B']
  8. In [419]: dftd
  9. Out[419]:
  10. A B C
  11. 0 2013-01-01 2013-01-01 00:00:10 -1 days +23:59:50
  12. 1 2013-01-01 2013-01-02 00:00:10 -2 days +23:59:50
  13. 2 2013-01-01 2013-01-03 00:00:10 -3 days +23:59:50
  14. 3 2013-01-01 2013-01-04 00:00:10 -4 days +23:59:50
  15. 4 2013-01-01 2013-01-05 00:00:10 -5 days +23:59:50
  16. 5 2013-01-01 2013-01-06 00:00:10 -6 days +23:59:50
  17. 6 2013-01-01 2013-01-07 00:00:10 -7 days +23:59:50
  18. 7 2013-01-01 2013-01-08 00:00:10 -8 days +23:59:50
  19. 8 2013-01-01 2013-01-09 00:00:10 -9 days +23:59:50
  20. 9 2013-01-01 2013-01-10 00:00:10 -10 days +23:59:50
  21. In [420]: store.append('dftd', dftd, data_columns=True)
  22. In [421]: store.select('dftd', "C<'-3.5D'")
  23. Out[421]:
  24. A B C
  25. 4 2013-01-01 2013-01-05 00:00:10 -5 days +23:59:50
  26. 5 2013-01-01 2013-01-06 00:00:10 -6 days +23:59:50
  27. 6 2013-01-01 2013-01-07 00:00:10 -7 days +23:59:50
  28. 7 2013-01-01 2013-01-08 00:00:10 -8 days +23:59:50
  29. 8 2013-01-01 2013-01-09 00:00:10 -9 days +23:59:50
  30. 9 2013-01-01 2013-01-10 00:00:10 -10 days +23:59:50

索引

你能在表格中已经有数据的情况下(在append/put操作之后)使用create_table_index创建/修改表格的索引。给表格创建索引是推荐的操作。当你使用带有索引的select当作where查询条件的时候,这将极大的加快你的查询速度。

::: tip 注意

索引会自动创建在可索引对象和任意你指定的数据列。你可以传递index=Falseappend来关闭这个操作。

:::

  1. # we have automagically already created an index (in the first section)
  2. In [422]: i = store.root.df.table.cols.index.index
  3. In [423]: i.optlevel, i.kind
  4. Out[423]: (6, 'medium')
  5. # change an index by passing new parameters
  6. In [424]: store.create_table_index('df', optlevel=9, kind='full')
  7. In [425]: i = store.root.df.table.cols.index.index
  8. In [426]: i.optlevel, i.kind
  9. Out[426]: (9, 'full')

通常当有大量数据添加保存的时候,关闭添加列的索引创建,等结束后再创建是非常有效的。

  1. In [427]: df_1 = pd.DataFrame(np.random.randn(10, 2), columns=list('AB'))
  2. In [428]: df_2 = pd.DataFrame(np.random.randn(10, 2), columns=list('AB'))
  3. In [429]: st = pd.HDFStore('appends.h5', mode='w')
  4. In [430]: st.append('df', df_1, data_columns=['B'], index=False)
  5. In [431]: st.append('df', df_2, data_columns=['B'], index=False)
  6. In [432]: st.get_storer('df').table
  7. Out[432]:
  8. /df/table (Table(20,)) ''
  9. description := {
  10. "index": Int64Col(shape=(), dflt=0, pos=0),
  11. "values_block_0": Float64Col(shape=(1,), dflt=0.0, pos=1),
  12. "B": Float64Col(shape=(), dflt=0.0, pos=2)}
  13. byteorder := 'little'
  14. chunkshape := (2730,)

当完成添加后再创建索引。

  1. In [433]: st.create_table_index('df', columns=['B'], optlevel=9, kind='full')
  2. In [434]: st.get_storer('df').table
  3. Out[434]:
  4. /df/table (Table(20,)) ''
  5. description := {
  6. "index": Int64Col(shape=(), dflt=0, pos=0),
  7. "values_block_0": Float64Col(shape=(1,), dflt=0.0, pos=1),
  8. "B": Float64Col(shape=(), dflt=0.0, pos=2)}
  9. byteorder := 'little'
  10. chunkshape := (2730,)
  11. autoindex := True
  12. colindexes := {
  13. "B": Index(9, full, shuffle, zlib(1)).is_csi=True}
  14. In [435]: st.close()

这里关于如何在现存的表格中创建完全分类索引(CSI)。

通过数据列查询

你可以指定(并建立索引)某些你希望能够执行查询的列(除了可索引的列,你始终可以查询这些列)。例如,假设你要在磁盘上执行此常规操作,仅返回与该查询匹配的帧。你可以指定data_columns = True来强制所有列为data_columns

  1. In [436]: df_dc = df.copy()
  2. In [437]: df_dc['string'] = 'foo'
  3. In [438]: df_dc.loc[df_dc.index[4:6], 'string'] = np.nan
  4. In [439]: df_dc.loc[df_dc.index[7:9], 'string'] = 'bar'
  5. In [440]: df_dc['string2'] = 'cool'
  6. In [441]: df_dc.loc[df_dc.index[1:3], ['B', 'C']] = 1.0
  7. In [442]: df_dc
  8. Out[442]:
  9. A B C string string2
  10. 2000-01-01 -0.426936 -1.780784 0.322691 foo cool
  11. 2000-01-02 1.638174 1.000000 1.000000 foo cool
  12. 2000-01-03 -1.022803 1.000000 1.000000 foo cool
  13. 2000-01-04 1.767446 -1.305266 -0.378355 foo cool
  14. 2000-01-05 0.486743 0.954551 0.859671 NaN cool
  15. 2000-01-06 -1.170458 -1.211386 -0.852728 NaN cool
  16. 2000-01-07 -0.450781 1.064650 1.014927 foo cool
  17. 2000-01-08 -0.810399 0.254343 -0.875526 bar cool
  18. # on-disk operations
  19. In [443]: store.append('df_dc', df_dc, data_columns=['B', 'C', 'string', 'string2'])
  20. In [444]: store.select('df_dc', where='B > 0')
  21. Out[444]:
  22. A B C string string2
  23. 2000-01-02 1.638174 1.000000 1.000000 foo cool
  24. 2000-01-03 -1.022803 1.000000 1.000000 foo cool
  25. 2000-01-05 0.486743 0.954551 0.859671 NaN cool
  26. 2000-01-07 -0.450781 1.064650 1.014927 foo cool
  27. 2000-01-08 -0.810399 0.254343 -0.875526 bar cool
  28. # getting creative
  29. In [445]: store.select('df_dc', 'B > 0 & C > 0 & string == foo')
  30. Out[445]:
  31. A B C string string2
  32. 2000-01-02 1.638174 1.00000 1.000000 foo cool
  33. 2000-01-03 -1.022803 1.00000 1.000000 foo cool
  34. 2000-01-07 -0.450781 1.06465 1.014927 foo cool
  35. # this is in-memory version of this type of selection
  36. In [446]: df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == 'foo')]
  37. Out[446]:
  38. A B C string string2
  39. 2000-01-02 1.638174 1.00000 1.000000 foo cool
  40. 2000-01-03 -1.022803 1.00000 1.000000 foo cool
  41. 2000-01-07 -0.450781 1.06465 1.014927 foo cool
  42. # we have automagically created this index and the B/C/string/string2
  43. # columns are stored separately as ``PyTables`` columns
  44. In [447]: store.root.df_dc.table
  45. Out[447]:
  46. /df_dc/table (Table(8,)) ''
  47. description := {
  48. "index": Int64Col(shape=(), dflt=0, pos=0),
  49. "values_block_0": Float64Col(shape=(1,), dflt=0.0, pos=1),
  50. "B": Float64Col(shape=(), dflt=0.0, pos=2),
  51. "C": Float64Col(shape=(), dflt=0.0, pos=3),
  52. "string": StringCol(itemsize=3, shape=(), dflt=b'', pos=4),
  53. "string2": StringCol(itemsize=4, shape=(), dflt=b'', pos=5)}
  54. byteorder := 'little'
  55. chunkshape := (1680,)
  56. autoindex := True
  57. colindexes := {
  58. "index": Index(6, medium, shuffle, zlib(1)).is_csi=False,
  59. "B": Index(6, medium, shuffle, zlib(1)).is_csi=False,
  60. "C": Index(6, medium, shuffle, zlib(1)).is_csi=False,
  61. "string": Index(6, medium, shuffle, zlib(1)).is_csi=False,
  62. "string2": Index(6, medium, shuffle, zlib(1)).is_csi=False}

把很多列变成数据列会存在性能下降的情况,因此它取决于用户。此外,在第一次添加/插入操作后你不能改变数据列(也不能索引)(当然,你能读取数据和创建一个新表!)。

迭代器

你能传递iterator=True或者chunksize=number_in_a_chunkselectselect_as_multiple,然后在结果中返回一个迭代器。默认一个块返回50,000行。

  1. In [448]: for df in store.select('df', chunksize=3):
  2. .....: print(df)
  3. .....:
  4. A B C
  5. 2000-01-01 -0.426936 -1.780784 0.322691
  6. 2000-01-02 1.638174 -2.184251 0.049673
  7. 2000-01-03 -1.022803 0.889445 2.827717
  8. A B C
  9. 2000-01-04 1.767446 -1.305266 -0.378355
  10. 2000-01-05 0.486743 0.954551 0.859671
  11. 2000-01-06 -1.170458 -1.211386 -0.852728
  12. A B C
  13. 2000-01-07 -0.450781 1.064650 1.014927
  14. 2000-01-08 -0.810399 0.254343 -0.875526

::: tip 注意

你也能使用read_hdf 打开迭代器,然后迭代结束会自动关闭保存。

  1. for df in pd.read_hdf('store.h5', 'df', chunksize=3):
  2. print(df)

:::

注意,chunksize主要适用于行。因此,如果你正在进行查询,chunksize将细分表中的总行和应用的查询,并在大小可能不相等的块上返回一个迭代器。

这是生成查询并使用它创建大小相等的返回块的方法。

  1. In [449]: dfeq = pd.DataFrame({'number': np.arange(1, 11)})
  2. In [450]: dfeq
  3. Out[450]:
  4. number
  5. 0 1
  6. 1 2
  7. 2 3
  8. 3 4
  9. 4 5
  10. 5 6
  11. 6 7
  12. 7 8
  13. 8 9
  14. 9 10
  15. In [451]: store.append('dfeq', dfeq, data_columns=['number'])
  16. In [452]: def chunks(l, n):
  17. .....: return [l[i:i + n] for i in range(0, len(l), n)]
  18. .....:
  19. In [453]: evens = [2, 4, 6, 8, 10]
  20. In [454]: coordinates = store.select_as_coordinates('dfeq', 'number=evens')
  21. In [455]: for c in chunks(coordinates, 2):
  22. .....: print(store.select('dfeq', where=c))
  23. .....:
  24. number
  25. 1 2
  26. 3 4
  27. number
  28. 5 6
  29. 7 8
  30. number
  31. 9 10

高级查询

选取单列

使用select_column方法可以找到单个可索引列或数据列。例如,这将让你非常快速地得到索引。它会返回一个由行号索引的Series结果。目前不接受where选择器。

  1. In [456]: store.select_column('df_dc', 'index')
  2. Out[456]:
  3. 0 2000-01-01
  4. 1 2000-01-02
  5. 2 2000-01-03
  6. 3 2000-01-04
  7. 4 2000-01-05
  8. 5 2000-01-06
  9. 6 2000-01-07
  10. 7 2000-01-08
  11. Name: index, dtype: datetime64[ns]
  12. In [457]: store.select_column('df_dc', 'string')
  13. Out[457]:
  14. 0 foo
  15. 1 foo
  16. 2 foo
  17. 3 foo
  18. 4 NaN
  19. 5 NaN
  20. 6 foo
  21. 7 bar
  22. Name: string, dtype: object
选取坐标

有时候你想要得到查询的坐标(又叫做 索引的定位),使用Int64Index将返回结果的定位。这些坐标也可以传递给之后的where操作。

  1. In [458]: df_coord = pd.DataFrame(np.random.randn(1000, 2),
  2. .....: index=pd.date_range('20000101', periods=1000))
  3. .....:
  4. In [459]: store.append('df_coord', df_coord)
  5. In [460]: c = store.select_as_coordinates('df_coord', 'index > 20020101')
  6. In [461]: c
  7. Out[461]:
  8. Int64Index([732, 733, 734, 735, 736, 737, 738, 739, 740, 741,
  9. ...
  10. 990, 991, 992, 993, 994, 995, 996, 997, 998, 999],
  11. dtype='int64', length=268)
  12. In [462]: store.select('df_coord', where=c)
  13. Out[462]:
  14. 0 1
  15. 2002-01-02 0.440865 -0.151651
  16. 2002-01-03 -1.195089 0.285093
  17. 2002-01-04 -0.925046 0.386081
  18. 2002-01-05 -1.942756 0.277699
  19. 2002-01-06 0.811776 0.528965
  20. ... ... ...
  21. 2002-09-22 1.061729 0.618085
  22. 2002-09-23 -0.209744 0.677197
  23. 2002-09-24 -1.808184 0.185667
  24. 2002-09-25 -0.208629 0.928603
  25. 2002-09-26 1.579717 -1.259530
  26. [268 rows x 2 columns]
使用位置遮罩选取

有时你的查询可能涉及到创建要选择的行列表。通常这个mask将得到索引操作的index结果。下面这个例子显示了选取日期索引的月份等于5的操作。

  1. In [463]: df_mask = pd.DataFrame(np.random.randn(1000, 2),
  2. .....: index=pd.date_range('20000101', periods=1000))
  3. .....:
  4. In [464]: store.append('df_mask', df_mask)
  5. In [465]: c = store.select_column('df_mask', 'index')
  6. In [466]: where = c[pd.DatetimeIndex(c).month == 5].index
  7. In [467]: store.select('df_mask', where=where)
  8. Out[467]:
  9. 0 1
  10. 2000-05-01 -1.199892 1.073701
  11. 2000-05-02 -1.058552 0.658487
  12. 2000-05-03 -0.015418 0.452879
  13. 2000-05-04 1.737818 0.426356
  14. 2000-05-05 -0.711668 -0.021266
  15. ... ... ...
  16. 2002-05-27 0.656196 0.993383
  17. 2002-05-28 -0.035399 -0.269286
  18. 2002-05-29 0.704503 2.574402
  19. 2002-05-30 -1.301443 2.770770
  20. 2002-05-31 -0.807599 0.420431
  21. [93 rows x 2 columns]
存储对象

如果你想检查存储对象,可以通过get_storer找到。你能使用这种编程方法获得一个对象的行数。

  1. In [468]: store.get_storer('df_dc').nrows
  2. Out[468]: 8

多表查询

append_to_multipleselect_as_multiple方法能一次性执行多表的添加/选取操作。这个方法是让一个表(称为选择器表)索引大多数/所有列,并执行查询。其他表是带索引的数据表,它会匹配选择器表的索引。然后,你能在选择器表执行非常快速的查询并返回大量数据。这个方法类似于有个非常宽的表,但能高效的查询。

append_to_multiple方法根据d把单个DataFrame划分为多个表,这里的d指的是字典,即将表名映射到该表中所需的“列”列表。如果使用None代替列表,则该表将具有给定DataFrame的其余未指定列。selector参数定义了哪张表是选择器表(即你可以从中执行查询的)。dropna参数将删除输入DataFrame的行来确保表格是同步的。这意味着如果其中一张表写入的一行全是np.NaN,那么将从所有表中删除这行。

如果dropna是False,则用户负责同步表。记住全是np.Nan的行是不会写入HDFStore,因此如果你选择dropna=False,一些表会比其他表具有更多行,而且select_as_multiple将不会有作用或返回意外的结果。

  1. In [469]: df_mt = pd.DataFrame(np.random.randn(8, 6),
  2. .....: index=pd.date_range('1/1/2000', periods=8),
  3. .....: columns=['A', 'B', 'C', 'D', 'E', 'F'])
  4. .....:
  5. In [470]: df_mt['foo'] = 'bar'
  6. In [471]: df_mt.loc[df_mt.index[1], ('A', 'B')] = np.nan
  7. # you can also create the tables individually
  8. In [472]: store.append_to_multiple({'df1_mt': ['A', 'B'], 'df2_mt': None},
  9. .....: df_mt, selector='df1_mt')
  10. .....:
  11. In [473]: store
  12. Out[473]:
  13. <class 'pandas.io.pytables.HDFStore'>
  14. File path: store.h5
  15. # individual tables were created
  16. In [474]: store.select('df1_mt')
  17. Out[474]:
  18. A B
  19. 2000-01-01 0.475158 0.427905
  20. 2000-01-02 NaN NaN
  21. 2000-01-03 -0.201829 0.651656
  22. 2000-01-04 -0.766427 -1.852010
  23. 2000-01-05 1.642910 -0.055583
  24. 2000-01-06 0.187880 1.536245
  25. 2000-01-07 -1.801014 0.244721
  26. 2000-01-08 3.055033 -0.683085
  27. In [475]: store.select('df2_mt')
  28. Out[475]:
  29. C D E F foo
  30. 2000-01-01 1.846285 -0.044826 0.074867 0.156213 bar
  31. 2000-01-02 0.446978 -0.323516 0.311549 -0.661368 bar
  32. 2000-01-03 -2.657254 0.649636 1.520717 1.604905 bar
  33. 2000-01-04 -0.201100 -2.107934 -0.450691 -0.748581 bar
  34. 2000-01-05 0.543779 0.111444 0.616259 -0.679614 bar
  35. 2000-01-06 0.831475 -0.566063 1.130163 -1.004539 bar
  36. 2000-01-07 0.745984 1.532560 0.229376 0.526671 bar
  37. 2000-01-08 -0.922301 2.760888 0.515474 -0.129319 bar
  38. # as a multiple
  39. In [476]: store.select_as_multiple(['df1_mt', 'df2_mt'], where=['A>0', 'B>0'],
  40. .....: selector='df1_mt')
  41. .....:
  42. Out[476]:
  43. A B C D E F foo
  44. 2000-01-01 0.475158 0.427905 1.846285 -0.044826 0.074867 0.156213 bar
  45. 2000-01-06 0.187880 1.536245 0.831475 -0.566063 1.130163 -1.004539 bar

从表中删除

你能够通过where指定有选择地从表中删除数据。删除行,重点理解PyTables删除行是通过先抹去行,接着删除后面的数据。因此,根据数据的方向来删除会是非常耗时的操作。所以为了获得最佳性能,首先让要删除的数据维度可索引是很有必要的。

数据根据(在磁盘上)可索引项来排序,这里有个简单的用例。你能存储面板数据(也叫时间序列-截面数据),在major_axis中存储日期,而minor_axis中存储ids。数据像下面这样交错:

  • date_1
    • id_1
    • id_2
    • .
    • id_n
  • date_2
    • id_1
    • .
    • id_n

应该清楚的是在 major_axis 上的删除操作将非常快,正如数据块被删除,接着后面的数据也会移动。另一方面,在minor_axis 的操作将非常耗时。在这种情况下,几乎可以肯定使用where操作来选取所有除开缺失数据的列重写表格会更快。

::: danger 警告

请注意HDF5不会自动回收空间在h5文件中。于是重复地删除(或者移除节点)再添加操作将会导致文件体积增大

要重新打包和清理文件,请使用ptrepack

:::

注意事项

压缩

PyTables 允许存储地数据被压缩。这适用于所有类型地存储,不仅仅是表格。这两个参数 complevelcomplib可用来控制压缩。

complevel指定数据会以何种方式压缩。

complib 指定要使用的压缩库。如果没有指定,那将使用默认的 zlib库。压缩库通常会从压缩率或速度两方面来优化,而结果取决于数据类型。选择哪种压缩类型取决于你的具体需求和数据。下面是支持的压缩库列表:

  • zlib: 默认的压缩库。经典的压缩方式,能获得好的压缩率但是速度有点慢。
  • lzo: 快速地压缩和解压。
  • bzip2: 不错的压缩率。
  • blosc: 快速地压缩和解压。

New in version 0.20.2: 支持另一种blosc压缩机:

  • blosc:blosclz 这是默认地blosc压缩机
  • blosc:lz4: 一款紧凑、快速且流行的压缩机。
  • blosc:lz4hc: 调整后的LZ4版本可产生更好的压缩比,但会牺牲速度。
  • blosc:snappy: 一款在很多地方使用的流行压缩机。
  • blosc:zlib: 经典款;虽然比前一款速度慢,但是可实现更好的压缩比。
  • blosc:zstd: 极其平衡的编解码器;它是以上所有压缩机中提供最佳压缩比的,且速度相当快。

如果 complib定义为其他的,不在上表中的库 ,那么就会出现 ValueError

::: tip 注意

如果你的平台上缺失指定的 complib 库,压缩机会使用默认 zlib库。

:::

文件中所有的对象都可以启用压缩:

  1. store_compressed = pd.HDFStore('store_compressed.h5', complevel=9,
  2. complib='blosc:blosclz')

或者在未启用压缩的存储中进行即时压缩(这仅适用于表格):

  1. store.append('df', df, complib='zlib', complevel=5)

ptrepack

PyTables不是在一开始的时候开启压缩,而是在表被写入后再压缩,这提供了更好的写入性能。你能使用 PyTables 提供的实用程序ptrepack实现。此外,事实上在ptrepack 之后会改变压缩等级。

  1. ptrepack --chunkshape=auto --propindexes --complevel=9 --complib=blosc in.h5 out.h5

另外, ptrepack in.h5 out.h5 将重新打包文件让你可以重用之前删除的空间。或者,它能简单的删除文件并再次写入亦或使用 copy 方法。

注意事项

::: danger 警告

HDFStore 不是一个安全的写入线程. PyTables 的底层仅支持(通过线程或进程的)并发读取。如果你要同时读取和写入,那么你需要单个进程的单个线程里序列化这些操作,否则会破坏你的数据。更多信息参见(GH2397)。

:::

  • 如果你用锁来管理多个进程间的写入, 那么你可能要在释放写锁之前使用fsync() 。方便起见,你能用 store.flush(fsync=True) 操作。
  • 一旦 table创建的列(DataFrame)固定了; 那只有相同的列才可以添加数据。
  • 注意时区 (例如, pytz.timezone('US/Eastern'))在不同的时区版本间不相等。 因此,如果使用时区库的一个版本将数据本地化到HDFStore中的特定时区,并且使用另一个版本更新该数据,则由于这些时区不相等,因此数据将转换为UTC。使用相同版本的时区库或在更新的时区定义中使用 tz_convert

::: danger 警告

如果列名没能用作属性选择器,那么PyTables 将显示NaturalNameWarning 。 自然标识符仅包括字母、数字和下划线,且不能以数字开头。其他标识符不能用where 从句,这通常不是个好主意。

:::

数据类型

HDFStore 将对象数据类型映射到 PyTables 的底层数据类型。这意味着以下的已知类型都有效:

Type Represents missing values
floating : float64, float32, float16 np.nan
integer : int64, int32, int8, uint64,uint32, uint8
boolean
datetime64[ns] NaT
timedelta64[ns] NaT
categorical : see the section below
object : strings np.nan

不支持unicode 列,这会出现 映射失败.

数据类别

你可以写入含category 类型的数据到 HDFStore。如果它是对象数组,那查询方式是一样的。然而, 含category的数据会以更高效的方式存储。

In [477]: dfcat = pd.DataFrame({'A': pd.Series(list('aabbcdba')).astype('category'),
   .....:                       'B': np.random.randn(8)})
   .....: 

In [478]: dfcat
Out[478]: 
   A         B
0  a  1.706605
1  a  1.373485
2  b -0.758424
3  b -0.116984
4  c -0.959461
5  d -1.517439
6  b -0.453150
7  a -0.827739

In [479]: dfcat.dtypes
Out[479]: 
A    category
B     float64
dtype: object

In [480]: cstore = pd.HDFStore('cats.h5', mode='w')

In [481]: cstore.append('dfcat', dfcat, format='table', data_columns=['A'])

In [482]: result = cstore.select('dfcat', where="A in ['b', 'c']")

In [483]: result
Out[483]: 
   A         B
2  b -0.758424
3  b -0.116984
4  c -0.959461
6  b -0.453150

In [484]: result.dtypes
Out[484]: 
A    category
B     float64
dtype: object

字符串列

min_itemsize

对于字符串列, HDFStore的底层使用的固定列宽(列的大小)。字符串列大小的计算方式是: 在第一个添加的时候,传递给 HDFStore(该列)数据长度的最大值。 随后的添加可能会引入更大一列字符串,这超过了该列所能容纳的内容,这将引发异常(不然,你可以悄悄地截断这些列,让信息丢失)。之后将放松这一点,允许用户指定截断。

在第一个表创建的时候,传递 min_itemsize 将优先指定特定字符串列的最小长度。min_itemsize可以是整数或将列名映射为整数的字典。 你可以将values作为键传递,以允许所有可索引对象或data_columns具有此min_itemsize。

传递 min_itemsize字典将导致所有可传递列自动创建 data_columns。

::: tip 注意

如果你没有传递任意 data_columns,那么min_itemsize将会传递任意字符串的最大长度。

:::

In [485]: dfs = pd.DataFrame({'A': 'foo', 'B': 'bar'}, index=list(range(5)))

In [486]: dfs
Out[486]: 
     A    B
0  foo  bar
1  foo  bar
2  foo  bar
3  foo  bar
4  foo  bar

# A and B have a size of 30
In [487]: store.append('dfs', dfs, min_itemsize=30)

In [488]: store.get_storer('dfs').table
Out[488]: 
/dfs/table (Table(5,)) ''
  description := {
  "index": Int64Col(shape=(), dflt=0, pos=0),
  "values_block_0": StringCol(itemsize=30, shape=(2,), dflt=b'', pos=1)}
  byteorder := 'little'
  chunkshape := (963,)
  autoindex := True
  colindexes := {
    "index": Index(6, medium, shuffle, zlib(1)).is_csi=False}

# A is created as a data_column with a size of 30
# B is size is calculated
In [489]: store.append('dfs2', dfs, min_itemsize={'A': 30})

In [490]: store.get_storer('dfs2').table
Out[490]: 
/dfs2/table (Table(5,)) ''
  description := {
  "index": Int64Col(shape=(), dflt=0, pos=0),
  "values_block_0": StringCol(itemsize=3, shape=(1,), dflt=b'', pos=1),
  "A": StringCol(itemsize=30, shape=(), dflt=b'', pos=2)}
  byteorder := 'little'
  chunkshape := (1598,)
  autoindex := True
  colindexes := {
    "index": Index(6, medium, shuffle, zlib(1)).is_csi=False,
    "A": Index(6, medium, shuffle, zlib(1)).is_csi=False}

nan_rep

字符串列将序列化 np.nan (缺失值)以 nan_rep 的字符串形式。默认的字符串值为nan。你可能会无意中将实际的nan值转换为缺失值。

In [491]: dfss = pd.DataFrame({'A': ['foo', 'bar', 'nan']})

In [492]: dfss
Out[492]: 
     A
0  foo
1  bar
2  nan

In [493]: store.append('dfss', dfss)

In [494]: store.select('dfss')
Out[494]: 
     A
0  foo
1  bar
2  NaN

# here you need to specify a different nan rep
In [495]: store.append('dfss2', dfss, nan_rep='_nan_')

In [496]: store.select('dfss2')
Out[496]: 
     A
0  foo
1  bar
2  nan

外部兼容性

HDFStore以特定格式写入table对象,这些格式适用于产生无损往返的pandas对象。 对于外部兼容性, HDFStore 能读取本地的 PyTables 格式表格。

可以编写一个HDFStore 对象,该对象可以使用rhdf5 库 (Package website)轻松导入到R 中。创建表格存储可以像这样:

In [497]: df_for_r = pd.DataFrame({"first": np.random.rand(100),
   .....:                          "second": np.random.rand(100),
   .....:                          "class": np.random.randint(0, 2, (100, ))},
   .....:                         index=range(100))
   .....: 

In [498]: df_for_r.head()
Out[498]: 
      first    second  class
0  0.366979  0.794525      0
1  0.296639  0.635178      1
2  0.395751  0.359693      0
3  0.484648  0.970016      1
4  0.810047  0.332303      0

In [499]: store_export = pd.HDFStore('export.h5')

In [500]: store_export.append('df_for_r', df_for_r, data_columns=df_dc.columns)

In [501]: store_export
Out[501]: 
<class 'pandas.io.pytables.HDFStore'>
File path: export.h5

在这个R文件中使用rhdf5库能读入数据到data.frame对象中。下面这个示例函数从值中读取相应的列名和数据值,再组合它们到data.frame中:

# Load values and column names for all datasets from corresponding nodes and
# insert them into one data.frame object.

library(rhdf5)

loadhdf5data <- function(h5File) {

listing <- h5ls(h5File)
# Find all data nodes, values are stored in *_values and corresponding column
# titles in *_items
data_nodes <- grep("_values", listing$name)
name_nodes <- grep("_items", listing$name)
data_paths = paste(listing$group[data_nodes], listing$name[data_nodes], sep = "/")
name_paths = paste(listing$group[name_nodes], listing$name[name_nodes], sep = "/")
columns = list()
for (idx in seq(data_paths)) {
  # NOTE: matrices returned by h5read have to be transposed to obtain
  # required Fortran order!
  data <- data.frame(t(h5read(h5File, data_paths[idx])))
  names <- t(h5read(h5File, name_paths[idx]))
  entry <- data.frame(data)
  colnames(entry) <- names
  columns <- append(columns, entry)
}

data <- data.frame(columns)

return(data)
}

现在你能导入 DataFrame 到R中:

> data = loadhdf5data("transfer.hdf5")
> head(data)
         first    second class
1 0.4170220047 0.3266449     0
2 0.7203244934 0.5270581     0
3 0.0001143748 0.8859421     1
4 0.3023325726 0.3572698     1
5 0.1467558908 0.9085352     1
6 0.0923385948 0.6233601     1

::: tip 注意

R函数列出了整个HDF5文件的内容,并从所有匹配的节点组合了data.frame 对象,因此,如果你已将多个DataFrame对象存储到单个HDF5文件中,那么只能用它作为起点。

:::

性能

  • fixed存储相比较,tables 格式会有写入的性能损失。这样的好处就是便于(大量的数据)能添加/删除和查询。与常规存储相比,写入时间通常更长。但是查询的时间就相当快,特别是在有索引的轴上。
  • 你可以传递 chunksize=append, 指定写入块的大小(默认是50000)。这将极大地降低写入时地内存使用情况。
  • 你可以将expectedrows =传递给第一个append来设置PyTables将预期的总行数。 这将优化读取/写入性能。
  • 重复的行可以写入表格,但是在选取的时候会进行筛选(会选最后一项;然后表在主要、次要对上是唯一的)。
  • 如果你企图存储已经序列化的PyTables类型数据(而不是存储为本地数据),那将引发A PerformanceWarning 。更多信息和解决办法参见Here

Feather

New in version 0.20.0.

Feather provides binary columnar serialization for data frames. It is designed to make reading and writing data frames efficient, and to make sharing data across data analysis languages easy.

Feather is designed to faithfully serialize and de-serialize DataFrames, supporting all of the pandas dtypes, including extension dtypes such as categorical and datetime with tz.

Several caveats.

  • This is a newer library, and the format, though stable, is not guaranteed to be backward compatible to the earlier versions.
  • The format will NOT write an Index, or MultiIndex for the DataFrame and will raise an error if a non-default one is provided. You can .reset_index() to store the index or .reset_index(drop=True) to ignore it.
  • Duplicate column names and non-string columns names are not supported
  • Non supported types include Period and actual Python object types. These will raise a helpful error message on an attempt at serialization.

See the Full Documentation.

In [502]: df = pd.DataFrame({'a': list('abc'),
   .....:                    'b': list(range(1, 4)),
   .....:                    'c': np.arange(3, 6).astype('u1'),
   .....:                    'd': np.arange(4.0, 7.0, dtype='float64'),
   .....:                    'e': [True, False, True],
   .....:                    'f': pd.Categorical(list('abc')),
   .....:                    'g': pd.date_range('20130101', periods=3),
   .....:                    'h': pd.date_range('20130101', periods=3, tz='US/Eastern'),
   .....:                    'i': pd.date_range('20130101', periods=3, freq='ns')})
   .....: 

In [503]: df
Out[503]: 
   a  b  c    d      e  f          g                         h                             i
0  a  1  3  4.0   True  a 2013-01-01 2013-01-01 00:00:00-05:00 2013-01-01 00:00:00.000000000
1  b  2  4  5.0  False  b 2013-01-02 2013-01-02 00:00:00-05:00 2013-01-01 00:00:00.000000001
2  c  3  5  6.0   True  c 2013-01-03 2013-01-03 00:00:00-05:00 2013-01-01 00:00:00.000000002

In [504]: df.dtypes
Out[504]: 
a                        object
b                         int64
c                         uint8
d                       float64
e                          bool
f                      category
g                datetime64[ns]
h    datetime64[ns, US/Eastern]
i                datetime64[ns]
dtype: object

Write to a feather file.

In [505]: df.to_feather('example.feather')

Read from a feather file.

In [506]: result = pd.read_feather('example.feather')

In [507]: result
Out[507]: 
   a  b  c    d      e  f          g                         h                             i
0  a  1  3  4.0   True  a 2013-01-01 2013-01-01 00:00:00-05:00 2013-01-01 00:00:00.000000000
1  b  2  4  5.0  False  b 2013-01-02 2013-01-02 00:00:00-05:00 2013-01-01 00:00:00.000000001
2  c  3  5  6.0   True  c 2013-01-03 2013-01-03 00:00:00-05:00 2013-01-01 00:00:00.000000002

# we preserve dtypes
In [508]: result.dtypes
Out[508]: 
a                        object
b                         int64
c                         uint8
d                       float64
e                          bool
f                      category
g                datetime64[ns]
h    datetime64[ns, US/Eastern]
i                datetime64[ns]
dtype: object

Parquet

New in version 0.21.0.

Apache Parquet provides a partitioned binary columnar serialization for data frames. It is designed to make reading and writing data frames efficient, and to make sharing data across data analysis languages easy. Parquet can use a variety of compression techniques to shrink the file size as much as possible while still maintaining good read performance.

Parquet is designed to faithfully serialize and de-serialize DataFrame s, supporting all of the pandas dtypes, including extension dtypes such as datetime with tz.

Several caveats.

  • Duplicate column names and non-string columns names are not supported.
  • The pyarrow engine always writes the index to the output, but fastparquet only writes non-default indexes. This extra column can cause problems for non-Pandas consumers that are not expecting it. You can force including or omitting indexes with the index argument, regardless of the underlying engine.
  • Index level names, if specified, must be strings.
  • Categorical dtypes can be serialized to parquet, but will de-serialize as object dtype.
  • Non supported types include Period and actual Python object types. These will raise a helpful error message on an attempt at serialization.

You can specify an engine to direct the serialization. This can be one of pyarrow, or fastparquet, or auto. If the engine is NOT specified, then the pd.options.io.parquet.engine option is checked; if this is also auto, then pyarrow is tried, and falling back to fastparquet.

See the documentation for pyarrow and fastparquet.

::: tip Note

These engines are very similar and should read/write nearly identical parquet format files. Currently pyarrow does not support timedelta data, fastparquet>=0.1.4 supports timezone aware datetimes. These libraries differ by having different underlying dependencies (fastparquet by using numba, while pyarrow uses a c-library).

:::

In [509]: df = pd.DataFrame({'a': list('abc'),
   .....:                    'b': list(range(1, 4)),
   .....:                    'c': np.arange(3, 6).astype('u1'),
   .....:                    'd': np.arange(4.0, 7.0, dtype='float64'),
   .....:                    'e': [True, False, True],
   .....:                    'f': pd.date_range('20130101', periods=3),
   .....:                    'g': pd.date_range('20130101', periods=3, tz='US/Eastern')})
   .....: 

In [510]: df
Out[510]: 
   a  b  c    d      e          f                         g
0  a  1  3  4.0   True 2013-01-01 2013-01-01 00:00:00-05:00
1  b  2  4  5.0  False 2013-01-02 2013-01-02 00:00:00-05:00
2  c  3  5  6.0   True 2013-01-03 2013-01-03 00:00:00-05:00

In [511]: df.dtypes
Out[511]: 
a                        object
b                         int64
c                         uint8
d                       float64
e                          bool
f                datetime64[ns]
g    datetime64[ns, US/Eastern]
dtype: object

Write to a parquet file.

In [512]: df.to_parquet('example_pa.parquet', engine='pyarrow')

In [513]: df.to_parquet('example_fp.parquet', engine='fastparquet')

Read from a parquet file.

In [514]: result = pd.read_parquet('example_fp.parquet', engine='fastparquet')

In [515]: result = pd.read_parquet('example_pa.parquet', engine='pyarrow')

In [516]: result.dtypes
Out[516]: 
a                        object
b                         int64
c                         uint8
d                       float64
e                          bool
f                datetime64[ns]
g    datetime64[ns, US/Eastern]
dtype: object

Read only certain columns of a parquet file.

In [517]: result = pd.read_parquet('example_fp.parquet',
   .....:                          engine='fastparquet', columns=['a', 'b'])
   .....: 

In [518]: result = pd.read_parquet('example_pa.parquet',
   .....:                          engine='pyarrow', columns=['a', 'b'])
   .....: 

In [519]: result.dtypes
Out[519]: 
a    object
b     int64
dtype: object

Handling indexes

Serializing a DataFrame to parquet may include the implicit index as one or more columns in the output file. Thus, this code:

In [520]: df = pd.DataFrame({'a': [1, 2], 'b': [3, 4]})

In [521]: df.to_parquet('test.parquet', engine='pyarrow')

creates a parquet file with three columns if you use pyarrow for serialization: a, b, and __index_level_0__. If you’re using fastparquet, the index may or may not be written to the file.

This unexpected extra column causes some databases like Amazon Redshift to reject the file, because that column doesn’t exist in the target table.

If you want to omit a dataframe’s indexes when writing, pass index=False to to_parquet():

In [522]: df.to_parquet('test.parquet', index=False)

This creates a parquet file with just the two expected columns, a and b. If your DataFrame has a custom index, you won’t get it back when you load this file into a DataFrame.

Passing index=True will always write the index, even if that’s not the underlying engine’s default behavior.

Partitioning Parquet files

New in version 0.24.0.

Parquet supports partitioning of data based on the values of one or more columns.

In [523]: df = pd.DataFrame({'a': [0, 0, 1, 1], 'b': [0, 1, 0, 1]})

In [524]: df.to_parquet(fname='test', engine='pyarrow',
   .....:               partition_cols=['a'], compression=None)
   .....:

The fname specifies the parent directory to which data will be saved. The partition_cols are the column names by which the dataset will be partitioned. Columns are partitioned in the order they are given. The partition splits are determined by the unique values in the partition columns. The above example creates a partitioned dataset that may look like:

test
├── a=0
│   ├── 0bac803e32dc42ae83fddfd029cbdebc.parquet
│   └──  ...
└── a=1
    ├── e6ab24a4f45147b49b54a662f0c412a3.parquet
    └── ...

SQL queries

The pandas.io.sql module provides a collection of query wrappers to both facilitate data retrieval and to reduce dependency on DB-specific API. Database abstraction is provided by SQLAlchemy if installed. In addition you will need a driver library for your database. Examples of such drivers are psycopg2 for PostgreSQL or pymysql for MySQL. For SQLite this is included in Python’s standard library by default. You can find an overview of supported drivers for each SQL dialect in the SQLAlchemy docs.

If SQLAlchemy is not installed, a fallback is only provided for sqlite (and for mysql for backwards compatibility, but this is deprecated and will be removed in a future version). This mode requires a Python database adapter which respect the Python DB-API.

See also some cookbook examples for some advanced strategies.

The key functions are:

Method Description
read_sql_table(table_name, con[, schema, …]) Read SQL database table into a DataFrame.
read_sql_query(sql, con[, index_col, …]) Read SQL query into a DataFrame.
read_sql(sql, con[, index_col, …]) Read SQL query or database table into a DataFrame.
DataFrame.to_sql(self, name, con[, schema, …]) Write records stored in a DataFrame to a SQL database.

::: tip Note

The function read_sql() is a convenience wrapper around read_sql_table() and read_sql_query() (and for backward compatibility) and will delegate to specific function depending on the provided input (database table name or sql query). Table names do not need to be quoted if they have special characters.

:::

In the following example, we use the SQlite SQL database engine. You can use a temporary SQLite database where data are stored in “memory”.

To connect with SQLAlchemy you use the create_engine() function to create an engine object from database URI. You only need to create the engine once per database you are connecting to. For more information on create_engine() and the URI formatting, see the examples below and the SQLAlchemy documentation

In [525]: from sqlalchemy import create_engine

# Create your engine.
In [526]: engine = create_engine('sqlite:///:memory:')

If you want to manage your own connections you can pass one of those instead:

with engine.connect() as conn, conn.begin():
    data = pd.read_sql_table('data', conn)

Writing DataFrames

Assuming the following data is in a DataFrame data, we can insert it into the database using to_sql().

id Date Col_1 Col_2 Col_3
26 2012-10-18 X 25.7 True
42 2012-10-19 Y -12.4 False
63 2012-10-20 Z 5.73 True
In [527]: data
Out[527]: 
   id       Date Col_1  Col_2  Col_3
0  26 2010-10-18     X  27.50   True
1  42 2010-10-19     Y -12.50  False
2  63 2010-10-20     Z   5.73   True

In [528]: data.to_sql('data', engine)

With some databases, writing large DataFrames can result in errors due to packet size limitations being exceeded. This can be avoided by setting the chunksize parameter when calling to_sql. For example, the following writes data to the database in batches of 1000 rows at a time:

In [529]: data.to_sql('data_chunked', engine, chunksize=1000)

SQL data types

to_sql() will try to map your data to an appropriate SQL data type based on the dtype of the data. When you have columns of dtype object, pandas will try to infer the data type.

You can always override the default type by specifying the desired SQL type of any of the columns by using the dtype argument. This argument needs a dictionary mapping column names to SQLAlchemy types (or strings for the sqlite3 fallback mode). For example, specifying to use the sqlalchemy String type instead of the default Text type for string columns:

In [530]: from sqlalchemy.types import String

In [531]: data.to_sql('data_dtype', engine, dtype={'Col_1': String})

::: tip Note

Due to the limited support for timedelta’s in the different database flavors, columns with type timedelta64 will be written as integer values as nanoseconds to the database and a warning will be raised.

:::

::: tip Note

Columns of category dtype will be converted to the dense representation as you would get with np.asarray(categorical) (e.g. for string categories this gives an array of strings). Because of this, reading the database table back in does not generate a categorical.

:::

Datetime data types

Using SQLAlchemy, to_sql() is capable of writing datetime data that is timezone naive or timezone aware. However, the resulting data stored in the database ultimately depends on the supported data type for datetime data of the database system being used.

The following table lists supported data types for datetime data for some common databases. Other database dialects may have different data types for datetime data.

Database SQL Datetime Types Timezone Support
SQLite TEXT No
MySQL TIMESTAMP or DATETIME No
PostgreSQL TIMESTAMP or TIMESTAMP WITH TIME ZONE Yes

When writing timezone aware data to databases that do not support timezones, the data will be written as timezone naive timestamps that are in local time with respect to the timezone.

read_sql_table() is also capable of reading datetime data that is timezone aware or naive. When reading TIMESTAMP WITH TIME ZONE types, pandas will convert the data to UTC.

Insertion method

New in version 0.24.0.

The parameter method controls the SQL insertion clause used. Possible values are:

  • None: Uses standard SQL INSERT clause (one per row).
  • 'multi': Pass multiple values in a single INSERT clause. It uses a special SQL syntax not supported by all backends. This usually provides better performance for analytic databases like Presto and Redshift, but has worse performance for traditional SQL backend if the table contains many columns. For more information check the SQLAlchemy documention.
  • callable with signature (pd_table, conn, keys, data_iter): This can be used to implement a more performant insertion method based on specific backend dialect features.

Example of a callable using PostgreSQL COPY clause:

# Alternative to_sql() *method* for DBs that support COPY FROM
import csv
from io import StringIO

def psql_insert_copy(table, conn, keys, data_iter):
    # gets a DBAPI connection that can provide a cursor
    dbapi_conn = conn.connection
    with dbapi_conn.cursor() as cur:
        s_buf = StringIO()
        writer = csv.writer(s_buf)
        writer.writerows(data_iter)
        s_buf.seek(0)

        columns = ', '.join('"{}"'.format(k) for k in keys)
        if table.schema:
            table_name = '{}.{}'.format(table.schema, table.name)
        else:
            table_name = table.name

        sql = 'COPY {} ({}) FROM STDIN WITH CSV'.format(
            table_name, columns)
        cur.copy_expert(sql=sql, file=s_buf)

Reading tables

read_sql_table() will read a database table given the table name and optionally a subset of columns to read.

::: tip Note

In order to use read_sql_table(), you must have the SQLAlchemy optional dependency installed.

:::

In [532]: pd.read_sql_table('data', engine)
Out[532]: 
   index  id       Date Col_1  Col_2  Col_3
0      0  26 2010-10-18     X  27.50   True
1      1  42 2010-10-19     Y -12.50  False
2      2  63 2010-10-20     Z   5.73   True

You can also specify the name of the column as the DataFrame index, and specify a subset of columns to be read.

In [533]: pd.read_sql_table('data', engine, index_col='id')
Out[533]: 
    index       Date Col_1  Col_2  Col_3
id                                      
26      0 2010-10-18     X  27.50   True
42      1 2010-10-19     Y -12.50  False
63      2 2010-10-20     Z   5.73   True

In [534]: pd.read_sql_table('data', engine, columns=['Col_1', 'Col_2'])
Out[534]: 
  Col_1  Col_2
0     X  27.50
1     Y -12.50
2     Z   5.73

And you can explicitly force columns to be parsed as dates:

In [535]: pd.read_sql_table('data', engine, parse_dates=['Date'])
Out[535]: 
   index  id       Date Col_1  Col_2  Col_3
0      0  26 2010-10-18     X  27.50   True
1      1  42 2010-10-19     Y -12.50  False
2      2  63 2010-10-20     Z   5.73   True

If needed you can explicitly specify a format string, or a dict of arguments to pass to pandas.to_datetime():

pd.read_sql_table('data', engine, parse_dates={'Date': '%Y-%m-%d'})
pd.read_sql_table('data', engine,
                  parse_dates={'Date': {'format': '%Y-%m-%d %H:%M:%S'}})

You can check if a table exists using has_table()

Schema support

Reading from and writing to different schema’s is supported through the schema keyword in the read_sql_table() and to_sql() functions. Note however that this depends on the database flavor (sqlite does not have schema’s). For example:

df.to_sql('table', engine, schema='other_schema')
pd.read_sql_table('table', engine, schema='other_schema')

Querying

You can query using raw SQL in the read_sql_query() function. In this case you must use the SQL variant appropriate for your database. When using SQLAlchemy, you can also pass SQLAlchemy Expression language constructs, which are database-agnostic.

In [536]: pd.read_sql_query('SELECT * FROM data', engine)
Out[536]: 
   index  id                        Date Col_1  Col_2  Col_3
0      0  26  2010-10-18 00:00:00.000000     X  27.50      1
1      1  42  2010-10-19 00:00:00.000000     Y -12.50      0
2      2  63  2010-10-20 00:00:00.000000     Z   5.73      1

Of course, you can specify a more “complex” query.

In [537]: pd.read_sql_query("SELECT id, Col_1, Col_2 FROM data WHERE id = 42;", engine)
Out[537]: 
   id Col_1  Col_2
0  42     Y  -12.5

The read_sql_query() function supports a chunksize argument. Specifying this will return an iterator through chunks of the query result:

In [538]: df = pd.DataFrame(np.random.randn(20, 3), columns=list('abc'))

In [539]: df.to_sql('data_chunks', engine, index=False)
In [540]: for chunk in pd.read_sql_query("SELECT * FROM data_chunks",
   .....:                                engine, chunksize=5):
   .....:     print(chunk)
   .....: 
          a         b         c
0 -0.900850 -0.323746  0.037100
1  0.057533 -0.032842  0.550902
2  1.026623  1.035455 -0.965140
3 -0.252405 -1.255987  0.639156
4  1.076701 -0.309155 -0.800182
          a         b         c
0 -0.206623  0.496077 -0.219935
1  0.631362 -1.166743  1.808368
2  0.023531  0.987573  0.471400
3 -0.982250 -0.192482  1.195452
4 -1.758855  0.477551  1.412567
          a         b         c
0 -1.120570  1.232764  0.417814
1  1.688089 -0.037645 -0.269582
2  0.646823 -0.603366  1.592966
3  0.724019 -0.515606 -0.180920
4  0.038244 -2.292866 -0.114634
          a         b         c
0 -0.970230 -0.963257 -0.128304
1  0.498621 -1.496506  0.701471
2 -0.272608 -0.119424 -0.882023
3 -0.253477  0.714395  0.664179
4  0.897140  0.455791  1.549590

You can also run a plain query without creating a DataFrame with execute(). This is useful for queries that don’t return values, such as INSERT. This is functionally equivalent to calling execute on the SQLAlchemy engine or db connection object. Again, you must use the SQL syntax variant appropriate for your database.

from pandas.io import sql
sql.execute('SELECT * FROM table_name', engine)
sql.execute('INSERT INTO table_name VALUES(?, ?, ?)', engine,
            params=[('id', 1, 12.2, True)])

Engine connection examples

To connect with SQLAlchemy you use the create_engine() function to create an engine object from database URI. You only need to create the engine once per database you are connecting to.

from sqlalchemy import create_engine

engine = create_engine('postgresql://scott:tiger@localhost:5432/mydatabase')

engine = create_engine('mysql+mysqldb://scott:tiger@localhost/foo')

engine = create_engine('oracle://scott:tiger@127.0.0.1:1521/sidname')

engine = create_engine('mssql+pyodbc://mydsn')

# sqlite://<nohostname>/<path>
# where <path> is relative:
engine = create_engine('sqlite:///foo.db')

# or absolute, starting with a slash:
engine = create_engine('sqlite:////absolute/path/to/foo.db')

For more information see the examples the SQLAlchemy documentation

Advanced SQLAlchemy queries

You can use SQLAlchemy constructs to describe your query.

Use sqlalchemy.text() to specify query parameters in a backend-neutral way

In [541]: import sqlalchemy as sa

In [542]: pd.read_sql(sa.text('SELECT * FROM data where Col_1=:col1'),
   .....:             engine, params={'col1': 'X'})
   .....: 
Out[542]: 
   index  id                        Date Col_1  Col_2  Col_3
0      0  26  2010-10-18 00:00:00.000000     X   27.5      1

If you have an SQLAlchemy description of your database you can express where conditions using SQLAlchemy expressions

In [543]: metadata = sa.MetaData()

In [544]: data_table = sa.Table('data', metadata,
   .....:                       sa.Column('index', sa.Integer),
   .....:                       sa.Column('Date', sa.DateTime),
   .....:                       sa.Column('Col_1', sa.String),
   .....:                       sa.Column('Col_2', sa.Float),
   .....:                       sa.Column('Col_3', sa.Boolean),
   .....:                       )
   .....: 

In [545]: pd.read_sql(sa.select([data_table]).where(data_table.c.Col_3 is True), engine)
Out[545]: 
Empty DataFrame
Columns: [index, Date, Col_1, Col_2, Col_3]
Index: []

You can combine SQLAlchemy expressions with parameters passed to read_sql() using sqlalchemy.bindparam()

In [546]: import datetime as dt

In [547]: expr = sa.select([data_table]).where(data_table.c.Date > sa.bindparam('date'))

In [548]: pd.read_sql(expr, engine, params={'date': dt.datetime(2010, 10, 18)})
Out[548]: 
   index       Date Col_1  Col_2  Col_3
0      1 2010-10-19     Y -12.50  False
1      2 2010-10-20     Z   5.73   True

Sqlite fallback

The use of sqlite is supported without using SQLAlchemy. This mode requires a Python database adapter which respect the Python DB-API.

You can create connections like so:

import sqlite3
con = sqlite3.connect(':memory:')

And then issue the following queries:

data.to_sql('data', con)
pd.read_sql_query("SELECT * FROM data", con)

Google BigQuery

::: danger Warning

Starting in 0.20.0, pandas has split off Google BigQuery support into the separate package pandas-gbq. You can pip install pandas-gbq to get it.

:::

The pandas-gbq package provides functionality to read/write from Google BigQuery.

pandas integrates with this external package. if pandas-gbq is installed, you can use the pandas methods pd.read_gbq and DataFrame.to_gbq, which will call the respective functions from pandas-gbq.

Full documentation can be found here.

Stata format

Writing to stata format

The method to_stata() will write a DataFrame into a .dta file. The format version of this file is always 115 (Stata 12).

In [549]: df = pd.DataFrame(np.random.randn(10, 2), columns=list('AB'))

In [550]: df.to_stata('stata.dta')

Stata data files have limited data type support; only strings with 244 or fewer characters, int8, int16, int32, float32 and float64 can be stored in .dta files. Additionally, Stata reserves certain values to represent missing data. Exporting a non-missing value that is outside of the permitted range in Stata for a particular data type will retype the variable to the next larger size. For example, int8 values are restricted to lie between -127 and 100 in Stata, and so variables with values above 100 will trigger a conversion to int16. nan values in floating points data types are stored as the basic missing data type (. in Stata).

::: tip Note

It is not possible to export missing data values for integer data types.

:::

The Stata writer gracefully handles other data types including int64, bool, uint8, uint16, uint32 by casting to the smallest supported type that can represent the data. For example, data with a type of uint8 will be cast to int8 if all values are less than 100 (the upper bound for non-missing int8 data in Stata), or, if values are outside of this range, the variable is cast to int16.

::: danger Warning

Conversion from int64 to float64 may result in a loss of precision if int64 values are larger than 2**53.

:::

::: danger Warning

StataWriter and to_stata() only support fixed width strings containing up to 244 characters, a limitation imposed by the version 115 dta file format. Attempting to write Stata dta files with strings longer than 244 characters raises a ValueError.

:::

Reading from Stata format

The top-level function read_stata will read a dta file and return either a DataFrame or a StataReader that can be used to read the file incrementally.

In [551]: pd.read_stata('stata.dta')
Out[551]: 
   index         A         B
0      0  1.031231  0.196447
1      1  0.190188  0.619078
2      2  0.036658 -0.100501
3      3  0.201772  1.763002
4      4  0.454977 -1.958922
5      5 -0.628529  0.133171
6      6 -1.274374  2.518925
7      7 -0.517547 -0.360773
8      8  0.877961 -1.881598
9      9 -0.699067 -1.566913

Specifying a chunksize yields a StataReader instance that can be used to read chunksize lines from the file at a time. The StataReader object can be used as an iterator.

In [552]: reader = pd.read_stata('stata.dta', chunksize=3)

In [553]: for df in reader:
   .....:     print(df.shape)
   .....: 
(3, 3)
(3, 3)
(3, 3)
(1, 3)

For more fine-grained control, use iterator=True and specify chunksize with each call to read().

In [554]: reader = pd.read_stata('stata.dta', iterator=True)

In [555]: chunk1 = reader.read(5)

In [556]: chunk2 = reader.read(5)

Currently the index is retrieved as a column.

The parameter convert_categoricals indicates whether value labels should be read and used to create a Categorical variable from them. Value labels can also be retrieved by the function value_labels, which requires read() to be called before use.

The parameter convert_missing indicates whether missing value representations in Stata should be preserved. If False (the default), missing values are represented as np.nan. If True, missing values are represented using StataMissingValue objects, and columns containing missing values will have object data type.

::: tip Note

read_stata() and StataReader support .dta formats 113-115 (Stata 10-12), 117 (Stata 13), and 118 (Stata 14).

:::

::: tip Note

Setting preserve_dtypes=False will upcast to the standard pandas data types: int64 for all integer types and float64 for floating point data. By default, the Stata data types are preserved when importing.

:::

Categorical data

Categorical data can be exported to Stata data files as value labeled data. The exported data consists of the underlying category codes as integer data values and the categories as value labels. Stata does not have an explicit equivalent to a Categorical and information about whether the variable is ordered is lost when exporting.

::: danger Warning

Stata only supports string value labels, and so str is called on the categories when exporting data. Exporting Categorical variables with non-string categories produces a warning, and can result a loss of information if the str representations of the categories are not unique.

:::

Labeled data can similarly be imported from Stata data files as Categorical variables using the keyword argument convert_categoricals (True by default). The keyword argument order_categoricals (True by default) determines whether imported Categorical variables are ordered.

::: tip Note

When importing categorical data, the values of the variables in the Stata data file are not preserved since Categorical variables always use integer data types between -1 and n-1 where n is the number of categories. If the original values in the Stata data file are required, these can be imported by setting convert_categoricals=False, which will import original data (but not the variable labels). The original values can be matched to the imported categorical data since there is a simple mapping between the original Stata data values and the category codes of imported Categorical variables: missing values are assigned code -1, and the smallest original value is assigned 0, the second smallest is assigned 1 and so on until the largest original value is assigned the code n-1.

:::

::: tip Note

Stata supports partially labeled series. These series have value labels for some but not all data values. Importing a partially labeled series will produce a Categorical with string categories for the values that are labeled and numeric categories for values with no label.

:::

SAS formats

The top-level function read_sas() can read (but not write) SAS xport (.XPT) and (since v0.18.0) SAS7BDAT (.sas7bdat) format files.

SAS files only contain two value types: ASCII text and floating point values (usually 8 bytes but sometimes truncated). For xport files, there is no automatic type conversion to integers, dates, or categoricals. For SAS7BDAT files, the format codes may allow date variables to be automatically converted to dates. By default the whole file is read and returned as a DataFrame.

Specify a chunksize or use iterator=True to obtain reader objects (XportReader or SAS7BDATReader) for incrementally reading the file. The reader objects also have attributes that contain additional information about the file and its variables.

Read a SAS7BDAT file:

df = pd.read_sas('sas_data.sas7bdat')

Obtain an iterator and read an XPORT file 100,000 lines at a time:

def do_something(chunk):
    pass

rdr = pd.read_sas('sas_xport.xpt', chunk=100000)
for chunk in rdr:
    do_something(chunk)

The specification for the xport file format is available from the SAS web site.

No official documentation is available for the SAS7BDAT format.

Other file formats

pandas itself only supports IO with a limited set of file formats that map cleanly to its tabular data model. For reading and writing other file formats into and from pandas, we recommend these packages from the broader community.

netCDF

xarray provides data structures inspired by the pandas DataFrame for working with multi-dimensional datasets, with a focus on the netCDF file format and easy conversion to and from pandas.

Performance considerations

This is an informal comparison of various IO methods, using pandas 0.20.3. Timings are machine dependent and small differences should be ignored.

In [1]: sz = 1000000
In [2]: df = pd.DataFrame({'A': np.random.randn(sz), 'B': [1] * sz})

In [3]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000000 entries, 0 to 999999
Data columns (total 2 columns):
A    1000000 non-null float64
B    1000000 non-null int64
dtypes: float64(1), int64(1)
memory usage: 15.3 MB

Given the next test set:

from numpy.random import randn

sz = 1000000
df = pd.DataFrame({'A': randn(sz), 'B': [1] * sz})


def test_sql_write(df):
    if os.path.exists('test.sql'):
        os.remove('test.sql')
    sql_db = sqlite3.connect('test.sql')
    df.to_sql(name='test_table', con=sql_db)
    sql_db.close()


def test_sql_read():
    sql_db = sqlite3.connect('test.sql')
    pd.read_sql_query("select * from test_table", sql_db)
    sql_db.close()


def test_hdf_fixed_write(df):
    df.to_hdf('test_fixed.hdf', 'test', mode='w')


def test_hdf_fixed_read():
    pd.read_hdf('test_fixed.hdf', 'test')


def test_hdf_fixed_write_compress(df):
    df.to_hdf('test_fixed_compress.hdf', 'test', mode='w', complib='blosc')


def test_hdf_fixed_read_compress():
    pd.read_hdf('test_fixed_compress.hdf', 'test')


def test_hdf_table_write(df):
    df.to_hdf('test_table.hdf', 'test', mode='w', format='table')


def test_hdf_table_read():
    pd.read_hdf('test_table.hdf', 'test')


def test_hdf_table_write_compress(df):
    df.to_hdf('test_table_compress.hdf', 'test', mode='w',
              complib='blosc', format='table')


def test_hdf_table_read_compress():
    pd.read_hdf('test_table_compress.hdf', 'test')


def test_csv_write(df):
    df.to_csv('test.csv', mode='w')


def test_csv_read():
    pd.read_csv('test.csv', index_col=0)


def test_feather_write(df):
    df.to_feather('test.feather')


def test_feather_read():
    pd.read_feather('test.feather')


def test_pickle_write(df):
    df.to_pickle('test.pkl')


def test_pickle_read():
    pd.read_pickle('test.pkl')


def test_pickle_write_compress(df):
    df.to_pickle('test.pkl.compress', compression='xz')


def test_pickle_read_compress():
    pd.read_pickle('test.pkl.compress', compression='xz')

When writing, the top-three functions in terms of speed are are test_pickle_write, test_feather_write and test_hdf_fixed_write_compress.

In [14]: %timeit test_sql_write(df)
2.37 s ± 36.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [15]: %timeit test_hdf_fixed_write(df)
194 ms ± 65.9 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

In [26]: %timeit test_hdf_fixed_write_compress(df)
119 ms ± 2.15 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

In [16]: %timeit test_hdf_table_write(df)
623 ms ± 125 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [27]: %timeit test_hdf_table_write_compress(df)
563 ms ± 23.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [17]: %timeit test_csv_write(df)
3.13 s ± 49.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [30]: %timeit test_feather_write(df)
103 ms ± 5.88 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

In [31]: %timeit test_pickle_write(df)
109 ms ± 3.72 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

In [32]: %timeit test_pickle_write_compress(df)
3.33 s ± 55.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

When reading, the top three are test_feather_read, test_pickle_read and test_hdf_fixed_read.

In [18]: %timeit test_sql_read()
1.35 s ± 14.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [19]: %timeit test_hdf_fixed_read()
14.3 ms ± 438 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

In [28]: %timeit test_hdf_fixed_read_compress()
23.5 ms ± 672 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

In [20]: %timeit test_hdf_table_read()
35.4 ms ± 314 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

In [29]: %timeit test_hdf_table_read_compress()
42.6 ms ± 2.1 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

In [22]: %timeit test_csv_read()
516 ms ± 27.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [33]: %timeit test_feather_read()
4.06 ms ± 115 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

In [34]: %timeit test_pickle_read()
6.5 ms ± 172 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

In [35]: %timeit test_pickle_read_compress()
588 ms ± 3.57 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Space on disk (in bytes)

34816000 Aug 21 18:00 test.sql
24009240 Aug 21 18:00 test_fixed.hdf
 7919610 Aug 21 18:00 test_fixed_compress.hdf
24458892 Aug 21 18:00 test_table.hdf
 8657116 Aug 21 18:00 test_table_compress.hdf
28520770 Aug 21 18:00 test.csv
16000248 Aug 21 18:00 test.feather
16000848 Aug 21 18:00 test.pkl
 7554108 Aug 21 18:00 test.pkl.compress