Reshaping and pivot tables

Reshaping by pivoting DataFrame objects

reshaping_pivot

Data is often stored in so-called “stacked” or “record” format:

  1. In [1]: df
  2. Out[1]:
  3. date variable value
  4. 0 2000-01-03 A 0.469112
  5. 1 2000-01-04 A -0.282863
  6. 2 2000-01-05 A -1.509059
  7. 3 2000-01-03 B -1.135632
  8. 4 2000-01-04 B 1.212112
  9. 5 2000-01-05 B -0.173215
  10. 6 2000-01-03 C 0.119209
  11. 7 2000-01-04 C -1.044236
  12. 8 2000-01-05 C -0.861849
  13. 9 2000-01-03 D -2.104569
  14. 10 2000-01-04 D -0.494929
  15. 11 2000-01-05 D 1.071804

For the curious here is how the above DataFrame was created:

  1. import pandas.util.testing as tm
  2. tm.N = 3
  3. def unpivot(frame):
  4. N, K = frame.shape
  5. data = {'value': frame.to_numpy().ravel('F'),
  6. 'variable': np.asarray(frame.columns).repeat(N),
  7. 'date': np.tile(np.asarray(frame.index), K)}
  8. return pd.DataFrame(data, columns=['date', 'variable', 'value'])
  9. df = unpivot(tm.makeTimeDataFrame())

To select out everything for variable A we could do:

  1. In [2]: df[df['variable'] == 'A']
  2. Out[2]:
  3. date variable value
  4. 0 2000-01-03 A 0.469112
  5. 1 2000-01-04 A -0.282863
  6. 2 2000-01-05 A -1.509059

But suppose we wish to do time series operations with the variables. A better representation would be where the columns are the unique variables and an index of dates identifies individual observations. To reshape the data into this form, we use the DataFrame.pivot() method (also implemented as a top level function pivot()):

  1. In [3]: df.pivot(index='date', columns='variable', values='value')
  2. Out[3]:
  3. variable A B C D
  4. date
  5. 2000-01-03 0.469112 -1.135632 0.119209 -2.104569
  6. 2000-01-04 -0.282863 1.212112 -1.044236 -0.494929
  7. 2000-01-05 -1.509059 -0.173215 -0.861849 1.071804

If the values argument is omitted, and the input DataFrame has more than one column of values which are not used as column or index inputs to pivot, then the resulting “pivoted” DataFrame will have hierarchical columns whose topmost level indicates the respective value column:

  1. In [4]: df['value2'] = df['value'] * 2
  2. In [5]: pivoted = df.pivot(index='date', columns='variable')
  3. In [6]: pivoted
  4. Out[6]:
  5. value value2
  6. variable A B C D A B C D
  7. date
  8. 2000-01-03 0.469112 -1.135632 0.119209 -2.104569 0.938225 -2.271265 0.238417 -4.209138
  9. 2000-01-04 -0.282863 1.212112 -1.044236 -0.494929 -0.565727 2.424224 -2.088472 -0.989859
  10. 2000-01-05 -1.509059 -0.173215 -0.861849 1.071804 -3.018117 -0.346429 -1.723698 2.143608

You can then select subsets from the pivoted DataFrame:

  1. In [7]: pivoted['value2']
  2. Out[7]:
  3. variable A B C D
  4. date
  5. 2000-01-03 0.938225 -2.271265 0.238417 -4.209138
  6. 2000-01-04 -0.565727 2.424224 -2.088472 -0.989859
  7. 2000-01-05 -3.018117 -0.346429 -1.723698 2.143608

Note that this returns a view on the underlying data in the case where the data are homogeneously-typed.

::: tip Note

pivot() will error with a ValueError: Index contains duplicate entries, cannot reshape if the index/column pair is not unique. In this case, consider using pivot_table() which is a generalization of pivot that can handle duplicate values for one index/column pair.

:::

Reshaping by stacking and unstacking

reshaping_stack

Closely related to the pivot() method are the related stack() and unstack() methods available on Series and DataFrame. These methods are designed to work together with MultiIndex objects (see the section on hierarchical indexing). Here are essentially what these methods do:

  • stack: “pivot” a level of the (possibly hierarchical) column labels, returning a DataFrame with an index with a new inner-most level of row labels.
  • unstack: (inverse operation of stack) “pivot” a level of the (possibly hierarchical) row index to the column axis, producing a reshaped DataFrame with a new inner-most level of column labels.

reshaping_unstack

The clearest way to explain is by example. Let’s take a prior example data set from the hierarchical indexing section:

  1. In [8]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
  2. ...: 'foo', 'foo', 'qux', 'qux'],
  3. ...: ['one', 'two', 'one', 'two',
  4. ...: 'one', 'two', 'one', 'two']]))
  5. ...:
  6. In [9]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
  7. In [10]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])
  8. In [11]: df2 = df[:4]
  9. In [12]: df2
  10. Out[12]:
  11. A B
  12. first second
  13. bar one 0.721555 -0.706771
  14. two -1.039575 0.271860
  15. baz one -0.424972 0.567020
  16. two 0.276232 -1.087401

The stack function “compresses” a level in the DataFrame’s columns to produce either:

  • A Series, in the case of a simple column Index.
  • A DataFrame, in the case of a MultiIndex in the columns.

If the columns have a MultiIndex, you can choose which level to stack. The stacked level becomes the new lowest level in a MultiIndex on the columns:

  1. In [13]: stacked = df2.stack()
  2. In [14]: stacked
  3. Out[14]:
  4. first second
  5. bar one A 0.721555
  6. B -0.706771
  7. two A -1.039575
  8. B 0.271860
  9. baz one A -0.424972
  10. B 0.567020
  11. two A 0.276232
  12. B -1.087401
  13. dtype: float64

With a “stacked” DataFrame or Series (having a MultiIndex as the index), the inverse operation of stack is unstack, which by default unstacks the last level:

  1. In [15]: stacked.unstack()
  2. Out[15]:
  3. A B
  4. first second
  5. bar one 0.721555 -0.706771
  6. two -1.039575 0.271860
  7. baz one -0.424972 0.567020
  8. two 0.276232 -1.087401
  9. In [16]: stacked.unstack(1)
  10. Out[16]:
  11. second one two
  12. first
  13. bar A 0.721555 -1.039575
  14. B -0.706771 0.271860
  15. baz A -0.424972 0.276232
  16. B 0.567020 -1.087401
  17. In [17]: stacked.unstack(0)
  18. Out[17]:
  19. first bar baz
  20. second
  21. one A 0.721555 -0.424972
  22. B -0.706771 0.567020
  23. two A -1.039575 0.276232
  24. B 0.271860 -1.087401

reshaping_unstack_1

If the indexes have names, you can use the level names instead of specifying the level numbers:

  1. In [18]: stacked.unstack('second')
  2. Out[18]:
  3. second one two
  4. first
  5. bar A 0.721555 -1.039575
  6. B -0.706771 0.271860
  7. baz A -0.424972 0.276232
  8. B 0.567020 -1.087401

reshaping_unstack_0

Notice that the stack and unstack methods implicitly sort the index levels involved. Hence a call to stack and then unstack, or vice versa, will result in a sorted copy of the original DataFrame or Series:

  1. In [19]: index = pd.MultiIndex.from_product([[2, 1], ['a', 'b']])
  2. In [20]: df = pd.DataFrame(np.random.randn(4), index=index, columns=['A'])
  3. In [21]: df
  4. Out[21]:
  5. A
  6. 2 a -0.370647
  7. b -1.157892
  8. 1 a -1.344312
  9. b 0.844885
  10. In [22]: all(df.unstack().stack() == df.sort_index())
  11. Out[22]: True

The above code will raise a TypeError if the call to sort_index is removed.

Multiple levels

You may also stack or unstack more than one level at a time by passing a list of levels, in which case the end result is as if each level in the list were processed individually.

  1. In [23]: columns = pd.MultiIndex.from_tuples([
  2. ....: ('A', 'cat', 'long'), ('B', 'cat', 'long'),
  3. ....: ('A', 'dog', 'short'), ('B', 'dog', 'short')],
  4. ....: names=['exp', 'animal', 'hair_length']
  5. ....: )
  6. ....:
  7. In [24]: df = pd.DataFrame(np.random.randn(4, 4), columns=columns)
  8. In [25]: df
  9. Out[25]:
  10. exp A B A B
  11. animal cat cat dog dog
  12. hair_length long long short short
  13. 0 1.075770 -0.109050 1.643563 -1.469388
  14. 1 0.357021 -0.674600 -1.776904 -0.968914
  15. 2 -1.294524 0.413738 0.276662 -0.472035
  16. 3 -0.013960 -0.362543 -0.006154 -0.923061
  17. In [26]: df.stack(level=['animal', 'hair_length'])
  18. Out[26]:
  19. exp A B
  20. animal hair_length
  21. 0 cat long 1.075770 -0.109050
  22. dog short 1.643563 -1.469388
  23. 1 cat long 0.357021 -0.674600
  24. dog short -1.776904 -0.968914
  25. 2 cat long -1.294524 0.413738
  26. dog short 0.276662 -0.472035
  27. 3 cat long -0.013960 -0.362543
  28. dog short -0.006154 -0.923061

The list of levels can contain either level names or level numbers (but not a mixture of the two).

  1. # df.stack(level=['animal', 'hair_length'])
  2. # from above is equivalent to:
  3. In [27]: df.stack(level=[1, 2])
  4. Out[27]:
  5. exp A B
  6. animal hair_length
  7. 0 cat long 1.075770 -0.109050
  8. dog short 1.643563 -1.469388
  9. 1 cat long 0.357021 -0.674600
  10. dog short -1.776904 -0.968914
  11. 2 cat long -1.294524 0.413738
  12. dog short 0.276662 -0.472035
  13. 3 cat long -0.013960 -0.362543
  14. dog short -0.006154 -0.923061

Missing data

These functions are intelligent about handling missing data and do not expect each subgroup within the hierarchical index to have the same set of labels. They also can handle the index being unsorted (but you can make it sorted by calling sort_index, of course). Here is a more complex example:

  1. In [28]: columns = pd.MultiIndex.from_tuples([('A', 'cat'), ('B', 'dog'),
  2. ....: ('B', 'cat'), ('A', 'dog')],
  3. ....: names=['exp', 'animal'])
  4. ....:
  5. In [29]: index = pd.MultiIndex.from_product([('bar', 'baz', 'foo', 'qux'),
  6. ....: ('one', 'two')],
  7. ....: names=['first', 'second'])
  8. ....:
  9. In [30]: df = pd.DataFrame(np.random.randn(8, 4), index=index, columns=columns)
  10. In [31]: df2 = df.iloc[[0, 1, 2, 4, 5, 7]]
  11. In [32]: df2
  12. Out[32]:
  13. exp A B A
  14. animal cat dog cat dog
  15. first second
  16. bar one 0.895717 0.805244 -1.206412 2.565646
  17. two 1.431256 1.340309 -1.170299 -0.226169
  18. baz one 0.410835 0.813850 0.132003 -0.827317
  19. foo one -1.413681 1.607920 1.024180 0.569605
  20. two 0.875906 -2.211372 0.974466 -2.006747
  21. qux two -1.226825 0.769804 -1.281247 -0.727707

As mentioned above, stack can be called with a level argument to select which level in the columns to stack:

  1. In [33]: df2.stack('exp')
  2. Out[33]:
  3. animal cat dog
  4. first second exp
  5. bar one A 0.895717 2.565646
  6. B -1.206412 0.805244
  7. two A 1.431256 -0.226169
  8. B -1.170299 1.340309
  9. baz one A 0.410835 -0.827317
  10. B 0.132003 0.813850
  11. foo one A -1.413681 0.569605
  12. B 1.024180 1.607920
  13. two A 0.875906 -2.006747
  14. B 0.974466 -2.211372
  15. qux two A -1.226825 -0.727707
  16. B -1.281247 0.769804
  17. In [34]: df2.stack('animal')
  18. Out[34]:
  19. exp A B
  20. first second animal
  21. bar one cat 0.895717 -1.206412
  22. dog 2.565646 0.805244
  23. two cat 1.431256 -1.170299
  24. dog -0.226169 1.340309
  25. baz one cat 0.410835 0.132003
  26. dog -0.827317 0.813850
  27. foo one cat -1.413681 1.024180
  28. dog 0.569605 1.607920
  29. two cat 0.875906 0.974466
  30. dog -2.006747 -2.211372
  31. qux two cat -1.226825 -1.281247
  32. dog -0.727707 0.769804

Unstacking can result in missing values if subgroups do not have the same set of labels. By default, missing values will be replaced with the default fill value for that data type, NaN for float, NaT for datetimelike, etc. For integer types, by default data will converted to float and missing values will be set to NaN.

  1. In [35]: df3 = df.iloc[[0, 1, 4, 7], [1, 2]]
  2. In [36]: df3
  3. Out[36]:
  4. exp B
  5. animal dog cat
  6. first second
  7. bar one 0.805244 -1.206412
  8. two 1.340309 -1.170299
  9. foo one 1.607920 1.024180
  10. qux two 0.769804 -1.281247
  11. In [37]: df3.unstack()
  12. Out[37]:
  13. exp B
  14. animal dog cat
  15. second one two one two
  16. first
  17. bar 0.805244 1.340309 -1.206412 -1.170299
  18. foo 1.607920 NaN 1.024180 NaN
  19. qux NaN 0.769804 NaN -1.281247

New in version 0.18.0.

Alternatively, unstack takes an optional fill_value argument, for specifying the value of missing data.

  1. In [38]: df3.unstack(fill_value=-1e9)
  2. Out[38]:
  3. exp B
  4. animal dog cat
  5. second one two one two
  6. first
  7. bar 8.052440e-01 1.340309e+00 -1.206412e+00 -1.170299e+00
  8. foo 1.607920e+00 -1.000000e+09 1.024180e+00 -1.000000e+09
  9. qux -1.000000e+09 7.698036e-01 -1.000000e+09 -1.281247e+00

With a MultiIndex

Unstacking when the columns are a MultiIndex is also careful about doing the right thing:

  1. In [39]: df[:3].unstack(0)
  2. Out[39]:
  3. exp A B A
  4. animal cat dog cat dog
  5. first bar baz bar baz bar baz bar baz
  6. second
  7. one 0.895717 0.410835 0.805244 0.81385 -1.206412 0.132003 2.565646 -0.827317
  8. two 1.431256 NaN 1.340309 NaN -1.170299 NaN -0.226169 NaN
  9. In [40]: df2.unstack(1)
  10. Out[40]:
  11. exp A B A
  12. animal cat dog cat dog
  13. second one two one two one two one two
  14. first
  15. bar 0.895717 1.431256 0.805244 1.340309 -1.206412 -1.170299 2.565646 -0.226169
  16. baz 0.410835 NaN 0.813850 NaN 0.132003 NaN -0.827317 NaN
  17. foo -1.413681 0.875906 1.607920 -2.211372 1.024180 0.974466 0.569605 -2.006747
  18. qux NaN -1.226825 NaN 0.769804 NaN -1.281247 NaN -0.727707

Reshaping by Melt

reshaping_melt

The top-level melt() function and the corresponding DataFrame.melt() are useful to massage a DataFrame into a format where one or more columns are identifier variables, while all other columns, considered measured variables, are “unpivoted” to the row axis, leaving just two non-identifier columns, “variable” and “value”. The names of those columns can be customized by supplying the var_name and value_name parameters.

For instance,

  1. In [41]: cheese = pd.DataFrame({'first': ['John', 'Mary'],
  2. ....: 'last': ['Doe', 'Bo'],
  3. ....: 'height': [5.5, 6.0],
  4. ....: 'weight': [130, 150]})
  5. ....:
  6. In [42]: cheese
  7. Out[42]:
  8. first last height weight
  9. 0 John Doe 5.5 130
  10. 1 Mary Bo 6.0 150
  11. In [43]: cheese.melt(id_vars=['first', 'last'])
  12. Out[43]:
  13. first last variable value
  14. 0 John Doe height 5.5
  15. 1 Mary Bo height 6.0
  16. 2 John Doe weight 130.0
  17. 3 Mary Bo weight 150.0
  18. In [44]: cheese.melt(id_vars=['first', 'last'], var_name='quantity')
  19. Out[44]:
  20. first last quantity value
  21. 0 John Doe height 5.5
  22. 1 Mary Bo height 6.0
  23. 2 John Doe weight 130.0
  24. 3 Mary Bo weight 150.0

Another way to transform is to use the wide_to_long() panel data convenience function. It is less flexible than melt(), but more user-friendly.

  1. In [45]: dft = pd.DataFrame({"A1970": {0: "a", 1: "b", 2: "c"},
  2. ....: "A1980": {0: "d", 1: "e", 2: "f"},
  3. ....: "B1970": {0: 2.5, 1: 1.2, 2: .7},
  4. ....: "B1980": {0: 3.2, 1: 1.3, 2: .1},
  5. ....: "X": dict(zip(range(3), np.random.randn(3)))
  6. ....: })
  7. ....:
  8. In [46]: dft["id"] = dft.index
  9. In [47]: dft
  10. Out[47]:
  11. A1970 A1980 B1970 B1980 X id
  12. 0 a d 2.5 3.2 -0.121306 0
  13. 1 b e 1.2 1.3 -0.097883 1
  14. 2 c f 0.7 0.1 0.695775 2
  15. In [48]: pd.wide_to_long(dft, ["A", "B"], i="id", j="year")
  16. Out[48]:
  17. X A B
  18. id year
  19. 0 1970 -0.121306 a 2.5
  20. 1 1970 -0.097883 b 1.2
  21. 2 1970 0.695775 c 0.7
  22. 0 1980 -0.121306 d 3.2
  23. 1 1980 -0.097883 e 1.3
  24. 2 1980 0.695775 f 0.1

Combining with stats and GroupBy

It should be no shock that combining pivot / stack / unstack with GroupBy and the basic Series and DataFrame statistical functions can produce some very expressive and fast data manipulations.

  1. In [49]: df
  2. Out[49]:
  3. exp A B A
  4. animal cat dog cat dog
  5. first second
  6. bar one 0.895717 0.805244 -1.206412 2.565646
  7. two 1.431256 1.340309 -1.170299 -0.226169
  8. baz one 0.410835 0.813850 0.132003 -0.827317
  9. two -0.076467 -1.187678 1.130127 -1.436737
  10. foo one -1.413681 1.607920 1.024180 0.569605
  11. two 0.875906 -2.211372 0.974466 -2.006747
  12. qux one -0.410001 -0.078638 0.545952 -1.219217
  13. two -1.226825 0.769804 -1.281247 -0.727707
  14. In [50]: df.stack().mean(1).unstack()
  15. Out[50]:
  16. animal cat dog
  17. first second
  18. bar one -0.155347 1.685445
  19. two 0.130479 0.557070
  20. baz one 0.271419 -0.006733
  21. two 0.526830 -1.312207
  22. foo one -0.194750 1.088763
  23. two 0.925186 -2.109060
  24. qux one 0.067976 -0.648927
  25. two -1.254036 0.021048
  26. # same result, another way
  27. In [51]: df.groupby(level=1, axis=1).mean()
  28. Out[51]:
  29. animal cat dog
  30. first second
  31. bar one -0.155347 1.685445
  32. two 0.130479 0.557070
  33. baz one 0.271419 -0.006733
  34. two 0.526830 -1.312207
  35. foo one -0.194750 1.088763
  36. two 0.925186 -2.109060
  37. qux one 0.067976 -0.648927
  38. two -1.254036 0.021048
  39. In [52]: df.stack().groupby(level=1).mean()
  40. Out[52]:
  41. exp A B
  42. second
  43. one 0.071448 0.455513
  44. two -0.424186 -0.204486
  45. In [53]: df.mean().unstack(0)
  46. Out[53]:
  47. exp A B
  48. animal
  49. cat 0.060843 0.018596
  50. dog -0.413580 0.232430

Pivot tables

While pivot() provides general purpose pivoting with various data types (strings, numerics, etc.), pandas also provides pivot_table() for pivoting with aggregation of numeric data.

The function pivot_table() can be used to create spreadsheet-style pivot tables. See the cookbook for some advanced strategies.

It takes a number of arguments:

  • data: a DataFrame object.
  • values: a column or a list of columns to aggregate.
  • index: a column, Grouper, array which has the same length as data, or list of them. Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values.
  • columns: a column, Grouper, array which has the same length as data, or list of them. Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values.
  • aggfunc: function to use for aggregation, defaulting to numpy.mean.

Consider a data set like this:

  1. In [54]: import datetime
  2. In [55]: df = pd.DataFrame({'A': ['one', 'one', 'two', 'three'] * 6,
  3. ....: 'B': ['A', 'B', 'C'] * 8,
  4. ....: 'C': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 4,
  5. ....: 'D': np.random.randn(24),
  6. ....: 'E': np.random.randn(24),
  7. ....: 'F': [datetime.datetime(2013, i, 1) for i in range(1, 13)]
  8. ....: + [datetime.datetime(2013, i, 15) for i in range(1, 13)]})
  9. ....:
  10. In [56]: df
  11. Out[56]:
  12. A B C D E F
  13. 0 one A foo 0.341734 -0.317441 2013-01-01
  14. 1 one B foo 0.959726 -1.236269 2013-02-01
  15. 2 two C foo -1.110336 0.896171 2013-03-01
  16. 3 three A bar -0.619976 -0.487602 2013-04-01
  17. 4 one B bar 0.149748 -0.082240 2013-05-01
  18. .. ... .. ... ... ... ...
  19. 19 three B foo 0.690579 -2.213588 2013-08-15
  20. 20 one C foo 0.995761 1.063327 2013-09-15
  21. 21 one A bar 2.396780 1.266143 2013-10-15
  22. 22 two B bar 0.014871 0.299368 2013-11-15
  23. 23 three C bar 3.357427 -0.863838 2013-12-15
  24. [24 rows x 6 columns]

We can produce pivot tables from this data very easily:

  1. In [57]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
  2. Out[57]:
  3. C bar foo
  4. A B
  5. one A 1.120915 -0.514058
  6. B -0.338421 0.002759
  7. C -0.538846 0.699535
  8. three A -1.181568 NaN
  9. B NaN 0.433512
  10. C 0.588783 NaN
  11. two A NaN 1.000985
  12. B 0.158248 NaN
  13. C NaN 0.176180
  14. In [58]: pd.pivot_table(df, values='D', index=['B'], columns=['A', 'C'], aggfunc=np.sum)
  15. Out[58]:
  16. A one three two
  17. C bar foo bar foo bar foo
  18. B
  19. A 2.241830 -1.028115 -2.363137 NaN NaN 2.001971
  20. B -0.676843 0.005518 NaN 0.867024 0.316495 NaN
  21. C -1.077692 1.399070 1.177566 NaN NaN 0.352360
  22. In [59]: pd.pivot_table(df, values=['D', 'E'], index=['B'], columns=['A', 'C'],
  23. ....: aggfunc=np.sum)
  24. ....:
  25. Out[59]:
  26. D E
  27. A one three two one three two
  28. C bar foo bar foo bar foo bar foo bar foo bar foo
  29. B
  30. A 2.241830 -1.028115 -2.363137 NaN NaN 2.001971 2.786113 -0.043211 1.922577 NaN NaN 0.128491
  31. B -0.676843 0.005518 NaN 0.867024 0.316495 NaN 1.368280 -1.103384 NaN -2.128743 -0.194294 NaN
  32. C -1.077692 1.399070 1.177566 NaN NaN 0.352360 -1.976883 1.495717 -0.263660 NaN NaN 0.872482

The result object is a DataFrame having potentially hierarchical indexes on the rows and columns. If the values column name is not given, the pivot table will include all of the data that can be aggregated in an additional level of hierarchy in the columns:

  1. In [60]: pd.pivot_table(df, index=['A', 'B'], columns=['C'])
  2. Out[60]:
  3. D E
  4. C bar foo bar foo
  5. A B
  6. one A 1.120915 -0.514058 1.393057 -0.021605
  7. B -0.338421 0.002759 0.684140 -0.551692
  8. C -0.538846 0.699535 -0.988442 0.747859
  9. three A -1.181568 NaN 0.961289 NaN
  10. B NaN 0.433512 NaN -1.064372
  11. C 0.588783 NaN -0.131830 NaN
  12. two A NaN 1.000985 NaN 0.064245
  13. B 0.158248 NaN -0.097147 NaN
  14. C NaN 0.176180 NaN 0.436241

Also, you can use Grouper for index and columns keywords. For detail of Grouper, see Grouping with a Grouper specification.

  1. In [61]: pd.pivot_table(df, values='D', index=pd.Grouper(freq='M', key='F'),
  2. ....: columns='C')
  3. ....:
  4. Out[61]:
  5. C bar foo
  6. F
  7. 2013-01-31 NaN -0.514058
  8. 2013-02-28 NaN 0.002759
  9. 2013-03-31 NaN 0.176180
  10. 2013-04-30 -1.181568 NaN
  11. 2013-05-31 -0.338421 NaN
  12. 2013-06-30 -0.538846 NaN
  13. 2013-07-31 NaN 1.000985
  14. 2013-08-31 NaN 0.433512
  15. 2013-09-30 NaN 0.699535
  16. 2013-10-31 1.120915 NaN
  17. 2013-11-30 0.158248 NaN
  18. 2013-12-31 0.588783 NaN

You can render a nice output of the table omitting the missing values by calling to_string if you wish:

  1. In [62]: table = pd.pivot_table(df, index=['A', 'B'], columns=['C'])
  2. In [63]: print(table.to_string(na_rep=''))
  3. D E
  4. C bar foo bar foo
  5. A B
  6. one A 1.120915 -0.514058 1.393057 -0.021605
  7. B -0.338421 0.002759 0.684140 -0.551692
  8. C -0.538846 0.699535 -0.988442 0.747859
  9. three A -1.181568 0.961289
  10. B 0.433512 -1.064372
  11. C 0.588783 -0.131830
  12. two A 1.000985 0.064245
  13. B 0.158248 -0.097147
  14. C 0.176180 0.436241

Note that pivot_table is also available as an instance method on DataFrame,

Adding margins

If you pass margins=True to pivot_table, special All columns and rows will be added with partial group aggregates across the categories on the rows and columns:

  1. In [64]: df.pivot_table(index=['A', 'B'], columns='C', margins=True, aggfunc=np.std)
  2. Out[64]:
  3. D E
  4. C bar foo All bar foo All
  5. A B
  6. one A 1.804346 1.210272 1.569879 0.179483 0.418374 0.858005
  7. B 0.690376 1.353355 0.898998 1.083825 0.968138 1.101401
  8. C 0.273641 0.418926 0.771139 1.689271 0.446140 1.422136
  9. three A 0.794212 NaN 0.794212 2.049040 NaN 2.049040
  10. B NaN 0.363548 0.363548 NaN 1.625237 1.625237
  11. C 3.915454 NaN 3.915454 1.035215 NaN 1.035215
  12. two A NaN 0.442998 0.442998 NaN 0.447104 0.447104
  13. B 0.202765 NaN 0.202765 0.560757 NaN 0.560757
  14. C NaN 1.819408 1.819408 NaN 0.650439 0.650439
  15. All 1.556686 0.952552 1.246608 1.250924 0.899904 1.059389

Cross tabulations

Use crosstab() to compute a cross-tabulation of two (or more) factors. By default crosstab computes a frequency table of the factors unless an array of values and an aggregation function are passed.

It takes a number of arguments

  • index: array-like, values to group by in the rows.
  • columns: array-like, values to group by in the columns.
  • values: array-like, optional, array of values to aggregate according to the factors.
  • aggfunc: function, optional, If no values array is passed, computes a frequency table.
  • rownames: sequence, default None, must match number of row arrays passed.
  • colnames: sequence, default None, if passed, must match number of column arrays passed.
  • margins: boolean, default False, Add row/column margins (subtotals)
  • normalize: boolean, {‘all’, ‘index’, ‘columns’}, or {0,1}, default False. Normalize by dividing all values by the sum of values.

Any Series passed will have their name attributes used unless row or column names for the cross-tabulation are specified

For example:

  1. In [65]: foo, bar, dull, shiny, one, two = 'foo', 'bar', 'dull', 'shiny', 'one', 'two'
  2. In [66]: a = np.array([foo, foo, bar, bar, foo, foo], dtype=object)
  3. In [67]: b = np.array([one, one, two, one, two, one], dtype=object)
  4. In [68]: c = np.array([dull, dull, shiny, dull, dull, shiny], dtype=object)
  5. In [69]: pd.crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c'])
  6. Out[69]:
  7. b one two
  8. c dull shiny dull shiny
  9. a
  10. bar 1 0 0 1
  11. foo 2 1 1 0

If crosstab receives only two Series, it will provide a frequency table.

  1. In [70]: df = pd.DataFrame({'A': [1, 2, 2, 2, 2], 'B': [3, 3, 4, 4, 4],
  2. ....: 'C': [1, 1, np.nan, 1, 1]})
  3. ....:
  4. In [71]: df
  5. Out[71]:
  6. A B C
  7. 0 1 3 1.0
  8. 1 2 3 1.0
  9. 2 2 4 NaN
  10. 3 2 4 1.0
  11. 4 2 4 1.0
  12. In [72]: pd.crosstab(df.A, df.B)
  13. Out[72]:
  14. B 3 4
  15. A
  16. 1 1 0
  17. 2 1 3

Any input passed containing Categorical data will have all of its categories included in the cross-tabulation, even if the actual data does not contain any instances of a particular category.

  1. In [73]: foo = pd.Categorical(['a', 'b'], categories=['a', 'b', 'c'])
  2. In [74]: bar = pd.Categorical(['d', 'e'], categories=['d', 'e', 'f'])
  3. In [75]: pd.crosstab(foo, bar)
  4. Out[75]:
  5. col_0 d e
  6. row_0
  7. a 1 0
  8. b 0 1

Normalization

New in version 0.18.1.

Frequency tables can also be normalized to show percentages rather than counts using the normalize argument:

  1. In [76]: pd.crosstab(df.A, df.B, normalize=True)
  2. Out[76]:
  3. B 3 4
  4. A
  5. 1 0.2 0.0
  6. 2 0.2 0.6

normalize can also normalize values within each row or within each column:

  1. In [77]: pd.crosstab(df.A, df.B, normalize='columns')
  2. Out[77]:
  3. B 3 4
  4. A
  5. 1 0.5 0.0
  6. 2 0.5 1.0

crosstab can also be passed a third Series and an aggregation function (aggfunc) that will be applied to the values of the third Series within each group defined by the first two Series:

  1. In [78]: pd.crosstab(df.A, df.B, values=df.C, aggfunc=np.sum)
  2. Out[78]:
  3. B 3 4
  4. A
  5. 1 1.0 NaN
  6. 2 1.0 2.0

Adding margins

Finally, one can also add margins or normalize this output.

  1. In [79]: pd.crosstab(df.A, df.B, values=df.C, aggfunc=np.sum, normalize=True,
  2. ....: margins=True)
  3. ....:
  4. Out[79]:
  5. B 3 4 All
  6. A
  7. 1 0.25 0.0 0.25
  8. 2 0.25 0.5 0.75
  9. All 0.50 0.5 1.00

Tiling

The cut() function computes groupings for the values of the input array and is often used to transform continuous variables to discrete or categorical variables:

  1. In [80]: ages = np.array([10, 15, 13, 12, 23, 25, 28, 59, 60])
  2. In [81]: pd.cut(ages, bins=3)
  3. Out[81]:
  4. [(9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (26.667, 43.333], (43.333, 60.0], (43.333, 60.0]]
  5. Categories (3, interval[float64]): [(9.95, 26.667] < (26.667, 43.333] < (43.333, 60.0]]

If the bins keyword is an integer, then equal-width bins are formed. Alternatively we can specify custom bin-edges:

  1. In [82]: c = pd.cut(ages, bins=[0, 18, 35, 70])
  2. In [83]: c
  3. Out[83]:
  4. [(0, 18], (0, 18], (0, 18], (0, 18], (18, 35], (18, 35], (18, 35], (35, 70], (35, 70]]
  5. Categories (3, interval[int64]): [(0, 18] < (18, 35] < (35, 70]]

New in version 0.20.0.

If the bins keyword is an IntervalIndex, then these will be used to bin the passed data.:

  1. pd.cut([25, 20, 50], bins=c.categories)

Computing indicator / dummy variables

To convert a categorical variable into a “dummy” or “indicator” DataFrame, for example a column in a DataFrame (a Series) which has k distinct values, can derive a DataFrame containing k columns of 1s and 0s using get_dummies():

  1. In [84]: df = pd.DataFrame({'key': list('bbacab'), 'data1': range(6)})
  2. In [85]: pd.get_dummies(df['key'])
  3. Out[85]:
  4. a b c
  5. 0 0 1 0
  6. 1 0 1 0
  7. 2 1 0 0
  8. 3 0 0 1
  9. 4 1 0 0
  10. 5 0 1 0

Sometimes it’s useful to prefix the column names, for example when merging the result with the original DataFrame:

  1. In [86]: dummies = pd.get_dummies(df['key'], prefix='key')
  2. In [87]: dummies
  3. Out[87]:
  4. key_a key_b key_c
  5. 0 0 1 0
  6. 1 0 1 0
  7. 2 1 0 0
  8. 3 0 0 1
  9. 4 1 0 0
  10. 5 0 1 0
  11. In [88]: df[['data1']].join(dummies)
  12. Out[88]:
  13. data1 key_a key_b key_c
  14. 0 0 0 1 0
  15. 1 1 0 1 0
  16. 2 2 1 0 0
  17. 3 3 0 0 1
  18. 4 4 1 0 0
  19. 5 5 0 1 0

This function is often used along with discretization functions like cut:

  1. In [89]: values = np.random.randn(10)
  2. In [90]: values
  3. Out[90]:
  4. array([ 0.4082, -1.0481, -0.0257, -0.9884, 0.0941, 1.2627, 1.29 ,
  5. 0.0824, -0.0558, 0.5366])
  6. In [91]: bins = [0, 0.2, 0.4, 0.6, 0.8, 1]
  7. In [92]: pd.get_dummies(pd.cut(values, bins))
  8. Out[92]:
  9. (0.0, 0.2] (0.2, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1.0]
  10. 0 0 0 1 0 0
  11. 1 0 0 0 0 0
  12. 2 0 0 0 0 0
  13. 3 0 0 0 0 0
  14. 4 1 0 0 0 0
  15. 5 0 0 0 0 0
  16. 6 0 0 0 0 0
  17. 7 1 0 0 0 0
  18. 8 0 0 0 0 0
  19. 9 0 0 1 0 0

See also Series.str.get_dummies.

get_dummies() also accepts a DataFrame. By default all categorical variables (categorical in the statistical sense, those with object or categorical dtype) are encoded as dummy variables.

  1. In [93]: df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['c', 'c', 'b'],
  2. ....: 'C': [1, 2, 3]})
  3. ....:
  4. In [94]: pd.get_dummies(df)
  5. Out[94]:
  6. C A_a A_b B_b B_c
  7. 0 1 1 0 0 1
  8. 1 2 0 1 0 1
  9. 2 3 1 0 1 0

All non-object columns are included untouched in the output. You can control the columns that are encoded with the columns keyword.

  1. In [95]: pd.get_dummies(df, columns=['A'])
  2. Out[95]:
  3. B C A_a A_b
  4. 0 c 1 1 0
  5. 1 c 2 0 1
  6. 2 b 3 1 0

Notice that the B column is still included in the output, it just hasn’t been encoded. You can drop B before calling get_dummies if you don’t want to include it in the output.

As with the Series version, you can pass values for the prefix and prefix_sep. By default the column name is used as the prefix, and ‘_’ as the prefix separator. You can specify prefix and prefix_sep in 3 ways:

  • string: Use the same value for prefix or prefix_sep for each column to be encoded.
  • list: Must be the same length as the number of columns being encoded.
  • dict: Mapping column name to prefix.
  1. In [96]: simple = pd.get_dummies(df, prefix='new_prefix')
  2. In [97]: simple
  3. Out[97]:
  4. C new_prefix_a new_prefix_b new_prefix_b new_prefix_c
  5. 0 1 1 0 0 1
  6. 1 2 0 1 0 1
  7. 2 3 1 0 1 0
  8. In [98]: from_list = pd.get_dummies(df, prefix=['from_A', 'from_B'])
  9. In [99]: from_list
  10. Out[99]:
  11. C from_A_a from_A_b from_B_b from_B_c
  12. 0 1 1 0 0 1
  13. 1 2 0 1 0 1
  14. 2 3 1 0 1 0
  15. In [100]: from_dict = pd.get_dummies(df, prefix={'B': 'from_B', 'A': 'from_A'})
  16. In [101]: from_dict
  17. Out[101]:
  18. C from_A_a from_A_b from_B_b from_B_c
  19. 0 1 1 0 0 1
  20. 1 2 0 1 0 1
  21. 2 3 1 0 1 0

New in version 0.18.0.

Sometimes it will be useful to only keep k-1 levels of a categorical variable to avoid collinearity when feeding the result to statistical models. You can switch to this mode by turn on drop_first.

  1. In [102]: s = pd.Series(list('abcaa'))
  2. In [103]: pd.get_dummies(s)
  3. Out[103]:
  4. a b c
  5. 0 1 0 0
  6. 1 0 1 0
  7. 2 0 0 1
  8. 3 1 0 0
  9. 4 1 0 0
  10. In [104]: pd.get_dummies(s, drop_first=True)
  11. Out[104]:
  12. b c
  13. 0 0 0
  14. 1 1 0
  15. 2 0 1
  16. 3 0 0
  17. 4 0 0

When a column contains only one level, it will be omitted in the result.

  1. In [105]: df = pd.DataFrame({'A': list('aaaaa'), 'B': list('ababc')})
  2. In [106]: pd.get_dummies(df)
  3. Out[106]:
  4. A_a B_a B_b B_c
  5. 0 1 1 0 0
  6. 1 1 0 1 0
  7. 2 1 1 0 0
  8. 3 1 0 1 0
  9. 4 1 0 0 1
  10. In [107]: pd.get_dummies(df, drop_first=True)
  11. Out[107]:
  12. B_b B_c
  13. 0 0 0
  14. 1 1 0
  15. 2 0 0
  16. 3 1 0
  17. 4 0 1

By default new columns will have np.uint8 dtype. To choose another dtype, use the dtype argument:

  1. In [108]: df = pd.DataFrame({'A': list('abc'), 'B': [1.1, 2.2, 3.3]})
  2. In [109]: pd.get_dummies(df, dtype=bool).dtypes
  3. Out[109]:
  4. B float64
  5. A_a bool
  6. A_b bool
  7. A_c bool
  8. dtype: object

New in version 0.23.0.

Factorizing values

To encode 1-d values as an enumerated type use factorize():

  1. In [110]: x = pd.Series(['A', 'A', np.nan, 'B', 3.14, np.inf])
  2. In [111]: x
  3. Out[111]:
  4. 0 A
  5. 1 A
  6. 2 NaN
  7. 3 B
  8. 4 3.14
  9. 5 inf
  10. dtype: object
  11. In [112]: labels, uniques = pd.factorize(x)
  12. In [113]: labels
  13. Out[113]: array([ 0, 0, -1, 1, 2, 3])
  14. In [114]: uniques
  15. Out[114]: Index(['A', 'B', 3.14, inf], dtype='object')

Note that factorize is similar to numpy.unique, but differs in its handling of NaN:

::: tip Note

The following numpy.unique will fail under Python 3 with a TypeError because of an ordering bug. See also here.

:::

  1. In [1]: x = pd.Series(['A', 'A', np.nan, 'B', 3.14, np.inf])
  2. In [2]: pd.factorize(x, sort=True)
  3. Out[2]:
  4. (array([ 2, 2, -1, 3, 0, 1]),
  5. Index([3.14, inf, 'A', 'B'], dtype='object'))
  6. In [3]: np.unique(x, return_inverse=True)[::-1]
  7. Out[3]: (array([3, 3, 0, 4, 1, 2]), array([nan, 3.14, inf, 'A', 'B'], dtype=object))

::: tip Note

If you just want to handle one column as a categorical variable (like R’s factor), you can use df["cat_col"] = pd.Categorical(df["col"]) or df["cat_col"] = df["col"].astype("category"). For full docs on Categorical, see the Categorical introduction and the API documentation.

:::

Examples

In this section, we will review frequently asked questions and examples. The column names and relevant column values are named to correspond with how this DataFrame will be pivoted in the answers below.

  1. In [115]: np.random.seed([3, 1415])
  2. In [116]: n = 20
  3. In [117]: cols = np.array(['key', 'row', 'item', 'col'])
  4. In [118]: df = cols + pd.DataFrame((np.random.randint(5, size=(n, 4))
  5. .....: // [2, 1, 2, 1]).astype(str))
  6. .....:
  7. In [119]: df.columns = cols
  8. In [120]: df = df.join(pd.DataFrame(np.random.rand(n, 2).round(2)).add_prefix('val'))
  9. In [121]: df
  10. Out[121]:
  11. key row item col val0 val1
  12. 0 key0 row3 item1 col3 0.81 0.04
  13. 1 key1 row2 item1 col2 0.44 0.07
  14. 2 key1 row0 item1 col0 0.77 0.01
  15. 3 key0 row4 item0 col2 0.15 0.59
  16. 4 key1 row0 item2 col1 0.81 0.64
  17. .. ... ... ... ... ... ...
  18. 15 key0 row3 item1 col1 0.31 0.23
  19. 16 key0 row0 item2 col3 0.86 0.01
  20. 17 key0 row4 item0 col3 0.64 0.21
  21. 18 key2 row2 item2 col0 0.13 0.45
  22. 19 key0 row2 item0 col4 0.37 0.70
  23. [20 rows x 6 columns]

Pivoting with single aggregations

Suppose we wanted to pivot df such that the col values are columns, row values are the index, and the mean of val0 are the values? In particular, the resulting DataFrame should look like:

::: tip Note

col col0 col1 col2 col3 col4 row row0 0.77 0.605 NaN 0.860 0.65 row2 0.13 NaN 0.395 0.500 0.25 row3 NaN 0.310 NaN 0.545 NaN row4 NaN 0.100 0.395 0.760 0.24

:::

This solution uses pivot_table(). Also note that aggfunc='mean' is the default. It is included here to be explicit.

  1. In [122]: df.pivot_table(
  2. .....: values='val0', index='row', columns='col', aggfunc='mean')
  3. .....:
  4. Out[122]:
  5. col col0 col1 col2 col3 col4
  6. row
  7. row0 0.77 0.605 NaN 0.860 0.65
  8. row2 0.13 NaN 0.395 0.500 0.25
  9. row3 NaN 0.310 NaN 0.545 NaN
  10. row4 NaN 0.100 0.395 0.760 0.24

Note that we can also replace the missing values by using the fill_value parameter.

  1. In [123]: df.pivot_table(
  2. .....: values='val0', index='row', columns='col', aggfunc='mean', fill_value=0)
  3. .....:
  4. Out[123]:
  5. col col0 col1 col2 col3 col4
  6. row
  7. row0 0.77 0.605 0.000 0.860 0.65
  8. row2 0.13 0.000 0.395 0.500 0.25
  9. row3 0.00 0.310 0.000 0.545 0.00
  10. row4 0.00 0.100 0.395 0.760 0.24

Also note that we can pass in other aggregation functions as well. For example, we can also pass in sum.

  1. In [124]: df.pivot_table(
  2. .....: values='val0', index='row', columns='col', aggfunc='sum', fill_value=0)
  3. .....:
  4. Out[124]:
  5. col col0 col1 col2 col3 col4
  6. row
  7. row0 0.77 1.21 0.00 0.86 0.65
  8. row2 0.13 0.00 0.79 0.50 0.50
  9. row3 0.00 0.31 0.00 1.09 0.00
  10. row4 0.00 0.10 0.79 1.52 0.24

Another aggregation we can do is calculate the frequency in which the columns and rows occur together a.k.a. “cross tabulation”. To do this, we can pass size to the aggfunc parameter.

  1. In [125]: df.pivot_table(index='row', columns='col', fill_value=0, aggfunc='size')
  2. Out[125]:
  3. col col0 col1 col2 col3 col4
  4. row
  5. row0 1 2 0 1 1
  6. row2 1 0 2 1 2
  7. row3 0 1 0 2 0
  8. row4 0 1 2 2 1

Pivoting with multiple aggregations

We can also perform multiple aggregations. For example, to perform both a sum and mean, we can pass in a list to the aggfunc argument.

  1. In [126]: df.pivot_table(
  2. .....: values='val0', index='row', columns='col', aggfunc=['mean', 'sum'])
  3. .....:
  4. Out[126]:
  5. mean sum
  6. col col0 col1 col2 col3 col4 col0 col1 col2 col3 col4
  7. row
  8. row0 0.77 0.605 NaN 0.860 0.65 0.77 1.21 NaN 0.86 0.65
  9. row2 0.13 NaN 0.395 0.500 0.25 0.13 NaN 0.79 0.50 0.50
  10. row3 NaN 0.310 NaN 0.545 NaN NaN 0.31 NaN 1.09 NaN
  11. row4 NaN 0.100 0.395 0.760 0.24 NaN 0.10 0.79 1.52 0.24

Note to aggregate over multiple value columns, we can pass in a list to the values parameter.

  1. In [127]: df.pivot_table(
  2. .....: values=['val0', 'val1'], index='row', columns='col', aggfunc=['mean'])
  3. .....:
  4. Out[127]:
  5. mean
  6. val0 val1
  7. col col0 col1 col2 col3 col4 col0 col1 col2 col3 col4
  8. row
  9. row0 0.77 0.605 NaN 0.860 0.65 0.01 0.745 NaN 0.010 0.02
  10. row2 0.13 NaN 0.395 0.500 0.25 0.45 NaN 0.34 0.440 0.79
  11. row3 NaN 0.310 NaN 0.545 NaN NaN 0.230 NaN 0.075 NaN
  12. row4 NaN 0.100 0.395 0.760 0.24 NaN 0.070 0.42 0.300 0.46

Note to subdivide over multiple columns we can pass in a list to the columns parameter.

  1. In [128]: df.pivot_table(
  2. .....: values=['val0'], index='row', columns=['item', 'col'], aggfunc=['mean'])
  3. .....:
  4. Out[128]:
  5. mean
  6. val0
  7. item item0 item1 item2
  8. col col2 col3 col4 col0 col1 col2 col3 col4 col0 col1 col3 col4
  9. row
  10. row0 NaN NaN NaN 0.77 NaN NaN NaN NaN NaN 0.605 0.86 0.65
  11. row2 0.35 NaN 0.37 NaN NaN 0.44 NaN NaN 0.13 NaN 0.50 0.13
  12. row3 NaN NaN NaN NaN 0.31 NaN 0.81 NaN NaN NaN 0.28 NaN
  13. row4 0.15 0.64 NaN NaN 0.10 0.64 0.88 0.24 NaN NaN NaN NaN

Exploding a list-like column

New in version 0.25.0.

Sometimes the values in a column are list-like.

  1. In [129]: keys = ['panda1', 'panda2', 'panda3']
  2. In [130]: values = [['eats', 'shoots'], ['shoots', 'leaves'], ['eats', 'leaves']]
  3. In [131]: df = pd.DataFrame({'keys': keys, 'values': values})
  4. In [132]: df
  5. Out[132]:
  6. keys values
  7. 0 panda1 [eats, shoots]
  8. 1 panda2 [shoots, leaves]
  9. 2 panda3 [eats, leaves]

We can ‘explode’ the values column, transforming each list-like to a separate row, by using explode(). This will replicate the index values from the original row:

  1. In [133]: df['values'].explode()
  2. Out[133]:
  3. 0 eats
  4. 0 shoots
  5. 1 shoots
  6. 1 leaves
  7. 2 eats
  8. 2 leaves
  9. Name: values, dtype: object

You can also explode the column in the DataFrame.

  1. In [134]: df.explode('values')
  2. Out[134]:
  3. keys values
  4. 0 panda1 eats
  5. 0 panda1 shoots
  6. 1 panda2 shoots
  7. 1 panda2 leaves
  8. 2 panda3 eats
  9. 2 panda3 leaves

Series.explode() will replace empty lists with np.nan and preserve scalar entries. The dtype of the resulting Series is always object.

  1. In [135]: s = pd.Series([[1, 2, 3], 'foo', [], ['a', 'b']])
  2. In [136]: s
  3. Out[136]:
  4. 0 [1, 2, 3]
  5. 1 foo
  6. 2 []
  7. 3 [a, b]
  8. dtype: object
  9. In [137]: s.explode()
  10. Out[137]:
  11. 0 1
  12. 0 2
  13. 0 3
  14. 1 foo
  15. 2 NaN
  16. 3 a
  17. 3 b
  18. dtype: object

Here is a typical usecase. You have comma separated strings in a column and want to expand this.

  1. In [138]: df = pd.DataFrame([{'var1': 'a,b,c', 'var2': 1},
  2. .....: {'var1': 'd,e,f', 'var2': 2}])
  3. .....:
  4. In [139]: df
  5. Out[139]:
  6. var1 var2
  7. 0 a,b,c 1
  8. 1 d,e,f 2

Creating a long form DataFrame is now straightforward using explode and chained operations

  1. In [140]: df.assign(var1=df.var1.str.split(',')).explode('var1')
  2. Out[140]:
  3. var1 var2
  4. 0 a 1
  5. 0 b 1
  6. 0 c 1
  7. 1 d 2
  8. 1 e 2
  9. 1 f 2