Seata 是一款开源的分布式事务解决方案,致力于提供高性能和简单易用的分布式事务服务。Seata 将为用户提供了 AT、TCC、SAGA 和 XA 事务模式,为用户打造一站式的分布式解决方案。

AT模式

简单来讲,AT模式就是把每个数据库当做一个 Resource,在本地事务提交时会去注册一个分支事务。
业务通过 JDBC 标准接口访问数据库资源时,Seata 框架会对所有请求进行拦截,做一些操作。每个本地事务提交时,Seata RM(Resource Manager,资源管理器) 都会向 TC(Transaction Coordinator,事务协调器) 注册一个分支事务。当请求链路调用完成后,发起方通知 TC 提交或回滚分布式事务,进入二阶段调用流程。此时,TC 会根据之前注册的分支事务回调到对应参与者去执行对应资源的第二阶段。TC 是怎么找到分支事务与资源的对应关系呢?每个资源都有一个全局唯一的资源 ID,并且在初始化时用该 ID 向 TC 注册资源。在运行时,每个分支事务的注册都会带上其资源 ID。这样 TC 就能在二阶段调用时正确找到对应的资源。

整体机制

两阶段提交协议的演变:

  • 一阶段:业务数据和回滚日志记录在同一个本地事务中提交,释放本地锁和连接资源。
  • 二阶段:提交异步化,非常快速地完成;回滚通过一阶段的回滚日志进行反向补偿。

    TCC模式

    Seata 框架把每组 TCC 接口当做一个 Resource,称为 TCC Resource。这套 TCC 接口可以是 RPC,也以是服务内 JVM 调用。在业务启动时,Seata 框架会自动扫描识别到 TCC 接口的调用方和发布方。如果是 RPC 的话,就是 sofa:reference、sofa:service、dubbo:reference、dubbo:service 等。
    扫描到 TCC 接口的调用方和发布方之后。如果是发布方,会在业务启动时向 TC 注册 TCC Resource,与 DataSource Resource 一样,每个资源也会带有一个资源 ID。
    如果是调用方,Seata 框架会给调用方加上切面,与 AT 模式一样,在运行时,该切面会拦截所有对 TCC 接口的调用。每调用一次 Try 接口,切面会先向 TC 注册一个分支事务,然后才去执行原来的 RPC 调用。当请求链路调用完成后,TC 通过分支事务的资源 ID 回调到正确的参与者去执行对应 TCC 资源的 Confirm 或 Cancel 方法。

框架本身很简单,主要是扫描 TCC 接口,注册资源,拦截接口调用,注册分支事务,最后回调二阶段接口,难点是实现TCC接口实现。

与AT模式的区别

AT 模式(参考链接 TBD)基于 支持本地 ACID 事务关系型数据库

  • 一阶段 prepare 行为:在本地事务中,一并提交业务数据更新和相应回滚日志记录。
  • 二阶段 commit 行为:马上成功结束,自动 异步批量清理回滚日志。
  • 二阶段 rollback 行为:通过回滚日志,自动 生成补偿操作,完成数据回滚。

相应的,TCC 模式,不依赖于底层数据资源的事务支持:

  • 一阶段 prepare 行为:调用 自定义 的 prepare 逻辑。
  • 二阶段 commit 行为:调用 自定义 的 commit 逻辑。
  • 二阶段 rollback 行为:调用 自定义 的 rollback 逻辑。

所谓 TCC 模式,是指支持把 自定义 的分支事务纳入到全局事务的管理中。

设计原则

1.需要将操作分成两阶段完成:
针对一个具体的业务服务,TCC 分布式事务模型需要业务系统提供三段业务逻辑:

  1. 初步操作 Try:完成所有业务检查,预留必须的业务资源。
  2. 确认操作 Confirm:真正执行的业务逻辑,不做任何业务检查,只使用 Try 阶段预留的业务资源。因此,只要 Try 操作成功,Confirm 必须能成功。另外,Confirm 操作需满足幂等性,保证一笔分布式事务能且只能成功一次。
  3. 取消操作 Cancel:释放 Try 阶段预留的业务资源。同样的,Cancel 操作也需要满足幂等性。

2.要根据自身的业务模型控制并发,这个对应 ACID 中的隔离性。

账务系统模型的设计

分析下账务服务的所有业务逻辑操作,无论是交易、充值、转账、退款等,都可以认为是对账户的加钱与扣钱。
image.png
因此,我们可以把账务系统拆分成两套 TCC 接口,即两个 TCC Resource,一个是加钱 TCC 接口,一个是扣钱 TCC 接口。
那这两套接口分别需要做什么事情呢?如何将其分成两个阶段完成?下面将会举例说明 TCC 业务模式的设计过程,并逐渐优化。
我们先来看扣钱的 TCC 资源怎么实现。场景为 A 转账 30 元给 B。账户 A 的余额中有 100 元,需要扣除其中 30 元。这里的余额就是所谓的业务资源,按照前面提到的原则,在第一阶段需要检查并预留业务资源,因此,我们在扣钱 TCC 资源的 Try 接口里先检查 A 账户余额是否足够,然后预留余额里的业务资源,即扣除 30 元。

在 Confirm 接口,由于业务资源已经在 Try 接口里扣除掉了,那么在第二阶段的 Confirm 接口里,可以什么都不用做。而在 Cancel 接口里,则需要把 Try 接口里扣除掉的 30 元还给账户。这是一个比较简单的扣钱 TCC 资源的实现,后面会继续优化它。


而在加钱的 TCC 资源里。在第一阶段 Try 接口里不能直接给账户加钱,如果这个时候给账户增加了可用余额,那么在一阶段执行完后,账户里的钱就可以被使用了。但是一阶段执行完以后,有可能是要回滚的。因此,真正加钱的动作需要放在 Confirm 接口里。对于加钱这个动作,第一阶段 Try 接口里不需要预留任何资源,可以设计为空操作。那相应的,Cancel 接口没有资源需要释放,也是一个空操作。只有真正需要提交时,再在 Confirm 接口里给账户增加可用余额。
这就是一个最简单的扣钱和加钱的 TCC 资源的设计。在扣钱 TCC 资源里,Try 接口预留资源扣除余额,Confirm 接口空操作,Cancel 接口释放资源,增加余额。在加钱 TCC 资源里,Try 接口无需预留资源,空操作;Confirm 接口直接增加余额;Cancel 接口无需释放资源,空操作。

账务系统模型并发控制

Seata 框架本身仅提供两阶段原子提交协议,保证分布式事务原子性。事务的隔离需要交给业务逻辑来实现。隔离的本质就是控制并发,防止并发事务操作相同资源而引起的结果错乱。

并发控制是业务逻辑执行正确的保证,但是像两阶段锁这样的并发访问控制技术要求一直持有数据库资源锁直到整个事务执行结束,特别是在分布式事务架构下,要求持有锁到分布式事务第二阶段执行结束,也就是说,分布式事务会加长资源锁的持有时间,导致并发性能进一步下降。
因此,TCC 模型的隔离性思想就是通过业务的改造,在第一阶段结束之后,从底层数据库资源层面的加锁过渡为上层业务层面的加锁,从而释放底层数据库锁资源,放宽分布式事务锁协议,将锁的粒度降到最低,以最大限度提高业务并发性能

账务系统模型优化

在实际中,为了更好的用户体验,在第一阶段,一般不会直接把账户的余额扣除,而是冻结,这样给用户展示的时候,就可以很清晰的知道,哪些是可用余额,哪些是冻结金额。既然模型发生了改变,那么tcc接口的实现也要发生相应的改变:

在扣钱的 TCC 资源里。Try 接口不再是直接扣除账户的可用余额,而是真正的预留资源,冻结部分可用余额,即减少可用余额,增加冻结金额。Confirm 接口也不再是空操作,而是使用 Try 接口预留的业务资源,即将该部分冻结金额扣除;最后在 Cancel 接口里,就是释放预留资源,把 Try 接口的冻结金额扣除,增加账户可用余额。加钱的 TCC 资源由于不涉及冻结金额的使用,所以无需更改。

那并发控制又变成什么样了呢?跟前面大部分类似,在事务 T1 的第一阶段 Try 操作中,先锁定账户,检查账户可用余额,如果余额充足,则预留业务资源,减少可用余额,增加冻结金额。并发的事务 T2 类似,加锁,检查余额,减少可用余额金额,增加冻结金额。


这里可以发现,事务 T1 和 T2 在一阶段执行完成后,都释放了数据库层面的资源锁,但是在各自二阶段的时候,相互之间并无干扰,各自使用本事务内第一阶段 Try 接口内冻结金额即可。这里大家就可以直观感受到,在每个事务的第一阶段,先通过数据库层面的资源锁,预留业务资源,即冻结金额。虽然在一阶段结束以后,数据库层面的资源锁被释放了,但是第二阶段的执行并不会被干扰,这是因为数据库层面资源锁释放以后通过业务隔离的方式为这部分资源加锁,不允许除本事务之外的其它并发事务动用,从而保证该事务的第二阶段能够正确顺利的执行。

最主要的有两点,一点是将业务逻辑拆分成两个阶段完成,即 Try、Confirm、Cancel 接口。其中 Try 接口检查资源、预留资源、Confirm 使用资源、Cancel 接口释放预留资源。另外一点就是并发控制,采用数据库锁与业务加锁的方式结合。由于业务加锁的特性不影响性能,因此,尽可能降低数据库锁粒度,过渡为业务加锁,从而提高业务并发能力。

TCC异常控制

在微服务架构下,很有可能出现网络超时、重发,机器宕机等一系列的异常 Case。一旦遇到这些 Case,就会导致我们的分布式事务执行过程出现异常。最常见的主要是这三种异常,分别是空回滚、幂等、悬挂。

空回滚

空回滚就是对于一个分布式事务,在没有调用 TCC 资源 Try 方法的情况下,调用了二阶段的 Cancel 方法,Cancel 方法需要识别出这是一个空回滚,然后直接返回成功。

什么样的情形会造成空回滚呢?可以看图中的第 2 步,前面讲过,注册分支事务是在调用 RPC 时,Seata 框架的切面会拦截到该次调用请求,先向 TC 注册一个分支事务,然后才去执行 RPC 调用逻辑。如果 RPC 调用逻辑有问题,比如调用方机器宕机、网络异常,都会造成 RPC 调用失败,即未执行 Try 方法。但是分布式事务已经开启了,需要推进到终态,因此,TC 会回调参与者二阶段 Cancel 接口,从而形成空回滚。
image.png
那怎么解决空回滚呢?前面提到,Cancel 要识别出空回滚,直接返回成功。那关键就是要识别出这个空回滚。思路很简单就是需要知道一阶段是否执行,如果执行了,那就是正常回滚;如果没执行,那就是空回滚。因此,需要一张额外的事务控制表,其中有分布式事务 ID 和分支事务 ID,第一阶段 Try 方法里会插入一条记录,表示一阶段执行了。Cancel 接口里读取该记录,如果该记录存在,则正常回滚;如果该记录不存在,则是空回滚。

幂等

幂等就是对于同一个分布式事务的同一个分支事务,重复去调用该分支事务的第二阶段接口,因此,要求 TCC 的二阶段 Confirm 和 Cancel 接口保证幂等,不会重复使用或者释放资源。如果幂等控制没有做好,很有可能导致资损等严重问题。


怎么解决重复执行的幂等问题呢?一个简单的思路就是记录每个分支事务的执行状态。在执行前状态,如果已执行,那就不再执行;否则,正常执行。前面在讲空回滚的时候,已经有一张事务控制表了,事务控制表的每条记录关联一个分支事务,那我们完全可以在这张事务控制表上加一个状态字段,用来记录每个分支事务的执行状态。
image.png
如图所示,该状态字段有三个值,分别是初始化、已提交、已回滚。Try 方法插入时,是初始化状态。二阶段 Confirm 和 Cancel 方法执行后修改为已提交或已回滚状态。当重复调用二阶段接口时,先获取该事务控制表对应记录,检查状态,如果已执行,则直接返回成功;否则正常执行。

悬挂

悬挂就是对于一个分布式事务,其二阶段 Cancel 接口比 Try 接口先执行。因为允许空回滚的原因,Cancel 接口认为 Try 接口没执行,空回滚直接返回成功,对于 Seata 框架来说,认为分布式事务的二阶段接口已经执行成功,整个分布式事务就结束了。但是这之后 Try 方法才真正开始执行,预留业务资源,前面提到事务并发控制的业务加锁,对于一个 Try 方法预留的业务资源,只有该分布式事务才能使用,然而 Seata 框架认为该分布式事务已经结束,也就是说,当出现这种情况时,该分布式事务第一阶段预留的业务资源就再也没有人能够处理了,对于这种情况,我们就称为悬挂,即业务资源预留后没法继续处理

什么样的情况会造成悬挂呢?按照前面所讲,在 RPC 调用时,先注册分支事务,再执行 RPC 调用,如果此时 RPC 调用的网络发生拥堵,通常 RPC 调用是有超时时间的,RPC 超时以后,发起方就会通知 TC 回滚该分布式事务,可能回滚完成后,RPC 请求才到达参与者,真正执行,从而造成悬挂。

怎么实现才能做到防悬挂呢?根据悬挂出现的条件先来分析下,悬挂是指二阶段 Cancel 执行完后,一阶段才执行。也就是说,为了避免悬挂,如果二阶段执行完成,那一阶段就不能再继续执行。因此,当一阶段执行时,需要先检查二阶段是否已经执行完成,如果已经执行,则一阶段不再执行;否则可以正常执行。那怎么检查二阶段是否已经执行呢?大家是否想到了刚才解决空回滚和幂等时用到的事务控制表,可以在二阶段执行时插入一条事务控制记录,状态为已回滚,这样当一阶段执行时,先读取该记录,如果记录存在,就认为二阶段已经执行;否则二阶段没执行。

异常控制的实现

首先是 Try 方法。结合前面讲到空回滚和悬挂异常,Try 方法主要需要考虑两个问题,一个是 Try 方法需要能够告诉二阶段接口,已经预留业务资源成功。第二个是需要检查第二阶段是否已经执行完成,如果已完成,则不再执行。
image.png
接下来是 Confirm 方法。因为 Confirm 方法不允许空回滚,也就是说,Confirm 方法一定要在 Try 方法之后执行。因此,Confirm 方法只需要关注重复提交的问题。可以先锁定事务记录,如果事务记录为空,则说明是一个空提交,不允许,终止执行。如果事务记录不为空,则继续检查状态是否为初始化,如果是,则说明一阶段正确执行,那二阶段正常执行即可。如果状态是已提交,则认为是重复提交,直接返回成功即可;如果状态是已回滚,也是一个异常,一个已回滚的事务,不能重新提交,需要能够拦截到这种异常情况,并报警。

最后是 Cancel 方法。因为 Cancel 方法允许空回滚,并且要在先执行的情况下,让 Try 方法感知到 Cancel 已经执行,所以和 Confirm 方法略有不同。首先依然是锁定事务记录。如果事务记录为空,则认为 Try 方法还没执行,即是空回滚。空回滚的情况下,应该先插入一条事务记录,确保后续的 Try 方法不会再执行。如果插入成功,则说明 Try 方法还没有执行,空回滚继续执行。如果插入失败,则认为 Try 方法正再执行,等待 TC 的重试即可。如果一开始读取事务记录不为空,则说明 Try 方法已经执行完毕,再检查状态是否为初始化,如果是,则还没有执行过其他二阶段方法,正常执行 Cancel 逻辑。如果状态为已回滚,则说明这是重复调用,允许幂等,直接返回成功即可。如果状态为已提交,则同样是一个异常,一个已提交的事务,不能再次回滚。

Saga模式

Saga模式是SEATA提供的长事务解决方案,在Saga模式中,业务流程中每个参与者都提交本地事务,当出现某一个参与者失败则补偿前面已经成功的参与者,一阶段正向服务和二阶段补偿服务都由业务开发实现。

适用场景

  • 业务流程长、业务流程多
  • 参与者包含其它公司或遗留系统服务,无法提供 TCC 模式要求的三个接口

    优势

  • 一阶段提交本地事务,无锁,高性能

  • 事件驱动架构,参与者可异步执行,高吞吐
  • 补偿服务易于实现

    缺点

  • 不保证隔离性

    说明

    本文总结自 https://www.infoq.cn/article/g33hcc-qosjplkt4e64e