使用 OpenCV 进行汽车追踪
在本教程中,我们将研究使用 haar 特征的车辆跟踪。 我们有一个经过训练的 haar 级联文件。
该程序将检测感兴趣的区域,将其分类为汽车,并在其周围显示矩形。
级联检测
让我们从基本的级联检测程序开始:
#! /usr/bin/python
import cv2
face_cascade = cv2.CascadeClassifier('cars.xml')
vc = cv2.VideoCapture('road.avi')
if vc.isOpened():
rval , frame = vc.read()
else:
rval = False
while rval:
rval, frame = vc.read()
# car detection.
cars = face_cascade.detectMultiScale(frame, 1.1, 2)
ncars = 0
for (x,y,w,h) in cars:
cv2.rectangle(frame,(x,y),(x+w,y+h),(0,0,255),2)
ncars = ncars + 1
# show result
cv2.imshow("Result",frame)
cv2.waitKey(1);
vc.release()
这样既可以检测屏幕中的汽车,也可以检测到噪声,并且屏幕有时会抖动。 为了避免所有这些情况,我们必须改进我们的汽车跟踪算法。 我们决定提出一个简单的解决方案。
汽车追踪算法
对于每一帧:
- 检测潜在的感兴趣区域
- 根据垂直,水平相似度过滤检测到的区域
- 如果是新区域,请添加到集合中
- 每 30 帧清除一次收藏
消除误报
均方误差函数用于消除误报。 我们比较图像的垂直和水平方向。 如果差异大或小,就不能成为汽车。
ROI 检测
可能无法在每帧中检测到汽车。 如果检测到新车,则将其添加到集合中。
我们将这个集合保留 30 帧,然后清除它。
#!/usr/bin/python
import cv2
import numpy as np
def diffUpDown(img):
# compare top and bottom size of the image
# 1\. cut image in two
# 2\. flip the top side
# 3\. resize to same size
# 4\. compare difference
height, width, depth = img.shape
half = height/2
top = img[0:half, 0:width]
bottom = img[half:half+half, 0:width]
top = cv2.flip(top,1)
bottom = cv2.resize(bottom, (32, 64))
top = cv2.resize(top, (32, 64))
return ( mse(top,bottom) )
def diffLeftRight(img):
# compare left and right size of the image
# 1\. cut image in two
# 2\. flip the right side
# 3\. resize to same size
# 4\. compare difference
height, width, depth = img.shape
half = width/2
left = img[0:height, 0:half]
right = img[0:height, half:half + half-1]
right = cv2.flip(right,1)
left = cv2.resize(left, (32, 64))
right = cv2.resize(right, (32, 64))
return ( mse(left,right) )
def mse(imageA, imageB):
err = np.sum((imageA.astype("float") - imageB.astype("float")) ** 2)
err /= float(imageA.shape[0] * imageA.shape[1])
return err
def isNewRoi(rx,ry,rw,rh,rectangles):
for r in rectangles:
if abs(r[0] - rx) < 40 and abs(r[1] - ry) < 40:
return False
return True
def detectRegionsOfInterest(frame, cascade):
scaleDown = 2
frameHeight, frameWidth, fdepth = frame.shape
# Resize
frame = cv2.resize(frame, (frameWidth/scaleDown, frameHeight/scaleDown))
frameHeight, frameWidth, fdepth = frame.shape
# haar detection.
cars = cascade.detectMultiScale(frame, 1.2, 1)
newRegions = []
minY = int(frameHeight*0.3)
# iterate regions of interest
for (x,y,w,h) in cars:
roi = [x,y,w,h]
roiImage = frame[y:y+h, x:x+w]
carWidth = roiImage.shape[0]
if y > minY:
diffX = diffLeftRight(roiImage)
diffY = round(diffUpDown(roiImage))
if diffX > 1600 and diffX < 3000 and diffY > 12000:
rx,ry,rw,rh = roi
newRegions.append( [rx*scaleDown,ry*scaleDown,rw*scaleDown,rh*scaleDown] )
return newRegions
def detectCars(filename):
rectangles = []
cascade = cv2.CascadeClassifier('cars.xml')
vc = cv2.VideoCapture(filename)
if vc.isOpened():
rval , frame = vc.read()
else:
rval = False
roi = [0,0,0,0]
frameCount = 0
while rval:
rval, frame = vc.read()
frameHeight, frameWidth, fdepth = frame.shape
newRegions = detectRegionsOfInterest(frame, cascade)
for region in newRegions:
if isNewRoi(region[0],region[1],region[2],region[3],rectangles):
rectangles.append(region)
for r in rectangles:
cv2.rectangle(frame,(r[0],r[1]),(r[0]+r[2],r[1]+r[3]),(0,0,255),3)
frameCount = frameCount + 1
if frameCount > 30:
frameCount = 0
rectangles = []
# show result
cv2.imshow("Result",frame)
cv2.waitKey(1);
vc.release()
detectCars('road.avi')
最后说明
级联不是旋转不变的,比例尺和平移的不变。 此外,检测具有 Haar 级联的车辆可能会相当不错,但是使用其他算法(显着点)也会有所收获。
您可能会喜欢: