需求

过滤输入的log日志中是否包含java

  1. 包含java的网站输出到e:/java.log
  2. 不包含java的网站输出到e:/other.log

输入数据 : log.txt

  1. java.org
  2. jdxia
  3. java.com
  4. x.com
  5. java

输出预期: java.log other.log

OutputFormat接口实现类

OutputFormat是MapReduce输出的基类,所有实现MapReduce输出都实现了OutputFormat接口.
常见是OutputFormat实现类

  1. 文本输出TextOutputFormat
    默认的输出格式是TextOutputFormat,它把每条记录写为文本行.他的键和值可以是任意类型,因为TextOutputFormat调用toString()方法把他们转换为字符串
  2. SequenceFileOutputFormat
    SequenceFileOutputFormat将它的输出写为一个顺序文件.如果输出需要作为后续MapReduce任务的输入,这便是一种很好的输出格式,因为他的格式紧凑,很容易被压缩
  3. 自定义OutputFormat
    根据用户需求,自定义实现输出

代码

自定义OutputFormat步骤

  1. 自定义一个类继承FileOutputFormat
  2. 改写recordwrite,具体改写输出数据的方法write()

自定义一个OutputFormat

  1. import org.apache.hadoop.io.NullWritable;
  2. import org.apache.hadoop.io.Text;
  3. import org.apache.hadoop.mapreduce.RecordWriter;
  4. import org.apache.hadoop.mapreduce.TaskAttemptContext;
  5. import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
  6. import java.io.IOException;
  7. public class FilterOutputFormat extends FileOutputFormat<Text, NullWritable> {
  8. @Override
  9. public RecordWriter<Text, NullWritable> getRecordWriter(TaskAttemptContext job) throws IOException, InterruptedException {
  10. //创建一个RecordWriter
  11. return new FilterRecordWriter(job);
  12. }
  13. }
  1. import org.apache.hadoop.fs.FSDataOutputStream;
  2. import org.apache.hadoop.fs.FileSystem;
  3. import org.apache.hadoop.fs.Path;
  4. import org.apache.hadoop.io.NullWritable;
  5. import org.apache.hadoop.io.Text;
  6. import org.apache.hadoop.mapreduce.RecordWriter;
  7. import org.apache.hadoop.mapreduce.TaskAttemptContext;
  8. import java.io.IOException;
  9. public class FilterRecordWriter extends RecordWriter<Text, NullWritable> {
  10. FSDataOutputStream javaOut = null;
  11. FSDataOutputStream otherOut = null;
  12. public FilterRecordWriter(TaskAttemptContext job) {
  13. //1. 获取文件系统
  14. FileSystem fs;
  15. try {
  16. fs = FileSystem.get(job.getConfiguration());
  17. //2. 创建输出文件路径
  18. Path javaPath = new Path("/Users/jdxia/Desktop/website/data/java.log");
  19. Path otherPath = new Path("/Users/jdxia/Desktop/website/data/other.log");
  20. //3. 创建输出流
  21. javaOut = fs.create(javaPath);
  22. otherOut = fs.create(otherPath);
  23. } catch (IOException e) {
  24. e.printStackTrace();
  25. }
  26. }
  27. @Override
  28. public void write(Text key, NullWritable value) throws IOException, InterruptedException {
  29. //判断是否包含"java"输出到不同文件
  30. if (key.toString().contains("java")) {
  31. javaOut.write(key.toString().getBytes());
  32. } else {
  33. otherOut.write(key.toString().getBytes());
  34. }
  35. }
  36. @Override
  37. public void close(TaskAttemptContext context) throws IOException, InterruptedException {
  38. //关闭资源,流不关文件是空的
  39. if (javaOut != null) {
  40. javaOut.close();
  41. }
  42. if (otherOut != null) {
  43. otherOut.close();
  44. }
  45. }
  46. }

Mapper类

  1. import org.apache.hadoop.io.LongWritable;
  2. import org.apache.hadoop.io.NullWritable;
  3. import org.apache.hadoop.io.Text;
  4. import org.apache.hadoop.mapreduce.Mapper;
  5. import java.io.IOException;
  6. public class FilterMapper extends Mapper<LongWritable, Text, Text, NullWritable> {
  7. Text k = new Text();
  8. @Override
  9. protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
  10. //获取一行
  11. String line = value.toString();
  12. k.set(line);
  13. //写出
  14. context.write(k, NullWritable.get());
  15. }
  16. }

Reducer类

  1. import org.apache.hadoop.io.NullWritable;
  2. import org.apache.hadoop.io.Text;
  3. import org.apache.hadoop.mapreduce.Reducer;
  4. import java.io.IOException;
  5. public class FilterReducer extends Reducer<Text, NullWritable, Text, NullWritable> {
  6. @Override
  7. protected void reduce(Text key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {
  8. String k = key.toString();
  9. k += "\r\n";
  10. context.write(new Text(k), NullWritable.get());
  11. }
  12. }

驱动类

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class FilterDriver {

    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);

        job.setJarByClass(FilterDriver.class);
        job.setMapperClass(FilterMapper.class);
        job.setReducerClass(FilterReducer.class);

        //输入输出组件
        job.setInputFormatClass(TextInputFormat.class);
        job.setOutputFormatClass(FilterOutputFormat.class);

        //Map的输出
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(NullWritable.class);

        //reduce的输出
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(NullWritable.class);

        //告诉框架,我们要处理的数据文件在那个路径下
        FileInputFormat.setInputPaths(job, new Path("/Users/jdxia/Desktop/website/data/input/"));

        //如果有这个文件夹就删除
        Path out = new Path("/Users/jdxia/Desktop/website/data/output/");
        FileSystem fileSystem = FileSystem.get(conf);
        if (fileSystem.exists(out)) {
            fileSystem.delete(out, true);
        }
        //告诉框架,我们的处理结果要输出到什么地方
        FileOutputFormat.setOutputPath(job, out);

        //虽然自定义OutputFormat,但是因为我们的OutputFormat继承自FileOutputFormat
        //而FileOutputFormat要输出一个_SUCCESS文件,所以这里还需要指定一个输出目录
        FileOutputFormat.setOutputPath(job, new Path("/Users/jdxia/Desktop/website/data/output/ "));

        boolean res = job.waitForCompletion(true);

        System.exit(res ? 0 : 1);
    }
}

注意

自定义OutputFormat时,注意recordWriter中的close方法必须关闭流资源.否则输出的文件内容中数据为空