一次性完成,统计和排序
我们看下继承的reduce
reduce需要调用run方法,run方法中不仅执行了reduce最后还执行了cleanup
因为map不断的提交给reduce,reduce排序好了就要写,但是这时候一旦写到文件中,后面再来任务,再写的话,就不能和前面一起排序了
所以我们写到一个treeMap中,然后在cleanup中做treeMap做排序
代码主要把继承reduce中的那个类改了下
package com.folwsum;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.StringUtils;
import java.io.IOException;
import java.util.Map;
import java.util.Set;
import java.util.TreeMap;
public class OneStepFlowSumSort {
public static class OneStepFlowSumMapper extends Mapper<LongWritable, Text, Text, FlowBean> {
Text k = new Text();
FlowBean v = new FlowBean();
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//将读取到的每一行数据进行字段的切分
String line = value.toString();
String[] fields = StringUtils.split(line, ' ');
//抽取我们业务所需要的字段
String phoneNum = fields[1];
long upFlow = Long.parseLong(fields[fields.length - 3]);
long downFlow = Long.parseLong(fields[fields.length - 2]);
k.set(phoneNum);
v.set(upFlow, downFlow);
context.write(k, v);
}
}
public static class OneStepFlowSumReducer extends Reducer<Text, FlowBean, Text, FlowBean> {
//在这里进行reduce端的局部缓存TreeMap
TreeMap<FlowBean,Text> treeMap = new TreeMap<FlowBean, Text>();
//这里reduce方法接收到的key就是某一组《a手机号,bean》《a手机号,bean》 《b手机号,bean》《b手机号,bean》当中的第一个手机号
//这里reduce方法接收到的values就是这一组kv对中的所以bean的一个迭代器
@Override
protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {
long upFlowCount = 0;
long downFlowCount = 0;
for(FlowBean bean : values){
upFlowCount += bean.getUpFlow();
downFlowCount += bean.getDownFlow();
}
FlowBean sumbean = new FlowBean();
sumbean.set(upFlowCount, downFlowCount);
Text text = new Text(key.toString());
treeMap.put(sumbean, text);
}
//这里进行我们全局的最终输出
@Override
protected void cleanup(Context context) throws IOException, InterruptedException {
Set<Map.Entry<FlowBean,Text>> entrySet = treeMap.entrySet();
for(Map.Entry<FlowBean,Text> ent :entrySet){
context.write(ent.getValue(), ent.getKey());
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(OneStepFlowSumSort.class);
//告诉程序,我们的程序所用的mapper类和reducer类是什么
job.setMapperClass(OneStepFlowSumMapper.class);
job.setReducerClass(OneStepFlowSumReducer.class);
//告诉框架,我们程序输出的数据类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(FlowBean.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class);
//告诉框架,我们程序使用的数据读取组件 结果输出所用的组件是什么
//TextInputFormat是mapreduce程序中内置的一种读取数据组件 准确的说 叫做 读取文本文件的输入组件
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
//告诉框架,我们要处理的数据文件在那个路劲下
FileInputFormat.setInputPaths(job, new Path("/Users/jdxia/Desktop/website/hdfs/flowsum/input/"));
//告诉框架,我们的处理结果要输出到什么地方
FileOutputFormat.setOutputPath(job, new Path("/Users/jdxia/Desktop/website/hdfs/flowsum/output/"));
boolean res = job.waitForCompletion(true);
System.exit(res?0:1);
}
}
}